Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043005211> ?p ?o ?g. }
- W3043005211 endingPage "487" @default.
- W3043005211 startingPage "453" @default.
- W3043005211 abstract "In 1986, Dixon and McKee (Z Angew Math Mech 66:535–544, 1986) developed a discrete fractional Gronwall inequality, which can be seen as a generalization of the classical discrete Gronwall inequality. However, this generalized discrete Gronwall inequality and its variant (Al-Maskari and Karaa in SIAM J Numer Anal 57:1524–1544, 2019) have not been widely applied in the numerical analysis of the time-stepping methods for the time-fractional evolution equations. The main purpose of this paper is to show how to apply the generalized discrete Gronwall inequality to prove the convergence of a class of time-stepping numerical methods for time-fractional nonlinear subdiffusion equations, including the popular fractional backward difference type methods of order one and two, and the fractional Crank-Nicolson type methods. We obtain the optimal $$L^2$$ error estimate in space discretization for multi-dimensional problems. The convergence of the fast time-stepping numerical methods is also proved in a simple manner. The present work unifies the convergence analysis of several existing time-stepping schemes. Numerical examples are provided to verify the effectiveness of the present method." @default.
- W3043005211 created "2020-07-23" @default.
- W3043005211 creator A5003759585 @default.
- W3043005211 creator A5009658255 @default.
- W3043005211 creator A5052906032 @default.
- W3043005211 creator A5055362302 @default.
- W3043005211 date "2022-04-01" @default.
- W3043005211 modified "2023-10-14" @default.
- W3043005211 title "Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations" @default.
- W3043005211 cites W1967868847 @default.
- W3043005211 cites W1969312973 @default.
- W3043005211 cites W1973929353 @default.
- W3043005211 cites W1976338762 @default.
- W3043005211 cites W1981384091 @default.
- W3043005211 cites W1982267083 @default.
- W3043005211 cites W1983997825 @default.
- W3043005211 cites W1991982189 @default.
- W3043005211 cites W1998527589 @default.
- W3043005211 cites W2001011967 @default.
- W3043005211 cites W2018348423 @default.
- W3043005211 cites W2053256951 @default.
- W3043005211 cites W2061647481 @default.
- W3043005211 cites W2065232540 @default.
- W3043005211 cites W2073659542 @default.
- W3043005211 cites W2092440717 @default.
- W3043005211 cites W2139227432 @default.
- W3043005211 cites W2165076033 @default.
- W3043005211 cites W2220122545 @default.
- W3043005211 cites W2340358137 @default.
- W3043005211 cites W2589697132 @default.
- W3043005211 cites W2593135059 @default.
- W3043005211 cites W2601627861 @default.
- W3043005211 cites W2608656286 @default.
- W3043005211 cites W2612471483 @default.
- W3043005211 cites W2619423951 @default.
- W3043005211 cites W2751422907 @default.
- W3043005211 cites W2783310902 @default.
- W3043005211 cites W2792441096 @default.
- W3043005211 cites W2794217358 @default.
- W3043005211 cites W2794616828 @default.
- W3043005211 cites W2799821673 @default.
- W3043005211 cites W2889152654 @default.
- W3043005211 cites W2903218532 @default.
- W3043005211 cites W2908683988 @default.
- W3043005211 cites W2953890883 @default.
- W3043005211 cites W2955902581 @default.
- W3043005211 cites W2963309992 @default.
- W3043005211 cites W2963688266 @default.
- W3043005211 cites W2963868979 @default.
- W3043005211 cites W2991946954 @default.
- W3043005211 cites W3036538818 @default.
- W3043005211 cites W3094937669 @default.
- W3043005211 cites W3099925677 @default.
- W3043005211 cites W3100497057 @default.
- W3043005211 cites W3103915318 @default.
- W3043005211 cites W3134442892 @default.
- W3043005211 cites W3204708751 @default.
- W3043005211 cites W4253937035 @default.
- W3043005211 doi "https://doi.org/10.1007/s13540-022-00022-6" @default.
- W3043005211 hasPublicationYear "2022" @default.
- W3043005211 type Work @default.
- W3043005211 sameAs 3043005211 @default.
- W3043005211 citedByCount "8" @default.
- W3043005211 countsByYear W30430052112022 @default.
- W3043005211 countsByYear W30430052112023 @default.
- W3043005211 crossrefType "journal-article" @default.
- W3043005211 hasAuthorship W3043005211A5003759585 @default.
- W3043005211 hasAuthorship W3043005211A5009658255 @default.
- W3043005211 hasAuthorship W3043005211A5052906032 @default.
- W3043005211 hasAuthorship W3043005211A5055362302 @default.
- W3043005211 hasBestOaLocation W30430052112 @default.
- W3043005211 hasConcept C121332964 @default.
- W3043005211 hasConcept C134306372 @default.
- W3043005211 hasConcept C158622935 @default.
- W3043005211 hasConcept C162324750 @default.
- W3043005211 hasConcept C18903297 @default.
- W3043005211 hasConcept C2777299769 @default.
- W3043005211 hasConcept C2777303404 @default.
- W3043005211 hasConcept C28826006 @default.
- W3043005211 hasConcept C33923547 @default.
- W3043005211 hasConcept C37608338 @default.
- W3043005211 hasConcept C45555294 @default.
- W3043005211 hasConcept C48753275 @default.
- W3043005211 hasConcept C50522688 @default.
- W3043005211 hasConcept C62520636 @default.
- W3043005211 hasConcept C73000952 @default.
- W3043005211 hasConcept C86803240 @default.
- W3043005211 hasConceptScore W3043005211C121332964 @default.
- W3043005211 hasConceptScore W3043005211C134306372 @default.
- W3043005211 hasConceptScore W3043005211C158622935 @default.
- W3043005211 hasConceptScore W3043005211C162324750 @default.
- W3043005211 hasConceptScore W3043005211C18903297 @default.
- W3043005211 hasConceptScore W3043005211C2777299769 @default.
- W3043005211 hasConceptScore W3043005211C2777303404 @default.
- W3043005211 hasConceptScore W3043005211C28826006 @default.
- W3043005211 hasConceptScore W3043005211C33923547 @default.
- W3043005211 hasConceptScore W3043005211C37608338 @default.
- W3043005211 hasConceptScore W3043005211C45555294 @default.