Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043008047> ?p ?o ?g. }
- W3043008047 endingPage "2261" @default.
- W3043008047 startingPage "2261" @default.
- W3043008047 abstract "Remote sensing images classification is the key technology for monitoring forest changes. Texture features have been demonstrated to have better effectiveness than spectral features in the improvement of the classification accuracy. The accuracy of extracting texture information by window-based method depends on the choice of the window size. Moreover, the size should ideally match the spatial scale of the object or class under consideration. However, most of the existing texture feature extraction methods are all based on a single window and do not adequately consider the scale of different objects. Our first proposition is to use a composite window for extracting texture features, which is a small window surrounded by a larger window. Our second proposition is to reinforce the performance of the trained ensemble classifier by training it using only the most important features. Considering the advantages of random forest classifier, such as fast training speed and few parameters, these features feed this classifier. Measures of feature importance are estimated along with the growth of the base classifiers, here decision trees. We aim to classify each pixel of the forest images disturbed by hurricanes and fires in three classes, damaged, not damaged, or unknown, as this could be used to compute time-dependent aggregates. In this study, two research areas—Nezer Forest in France and Blue Mountain Forest in Australia—are utilized to validating the effectiveness of the proposed method. Numerical simulations show increased performance and improved monitoring ability of forest disturbance when using these two propositions. When compared with the reference methods, the best increase of the overall accuracy obtained by the proposed algorithm is 4.77% and 2.96% on the Nezer forest data and Blue Mountain forest data, respectively." @default.
- W3043008047 created "2020-07-23" @default.
- W3043008047 creator A5008256662 @default.
- W3043008047 creator A5021408538 @default.
- W3043008047 creator A5044570096 @default.
- W3043008047 creator A5045912501 @default.
- W3043008047 creator A5066378186 @default.
- W3043008047 creator A5068336830 @default.
- W3043008047 date "2020-07-14" @default.
- W3043008047 modified "2023-10-06" @default.
- W3043008047 title "A Novel Feature Extension Method for the Forest Disaster Monitoring Using Multispectral Data" @default.
- W3043008047 cites W1601312358 @default.
- W3043008047 cites W1605688901 @default.
- W3043008047 cites W1986738039 @default.
- W3043008047 cites W2006069992 @default.
- W3043008047 cites W2038976302 @default.
- W3043008047 cites W2069735046 @default.
- W3043008047 cites W2069820899 @default.
- W3043008047 cites W2071874425 @default.
- W3043008047 cites W2076923985 @default.
- W3043008047 cites W2102428152 @default.
- W3043008047 cites W2110133912 @default.
- W3043008047 cites W2113388748 @default.
- W3043008047 cites W2127152313 @default.
- W3043008047 cites W2155261478 @default.
- W3043008047 cites W2166307050 @default.
- W3043008047 cites W2167840246 @default.
- W3043008047 cites W2285273467 @default.
- W3043008047 cites W2346953754 @default.
- W3043008047 cites W2467053112 @default.
- W3043008047 cites W2568616777 @default.
- W3043008047 cites W2734720508 @default.
- W3043008047 cites W2769358239 @default.
- W3043008047 cites W2769774644 @default.
- W3043008047 cites W2774571784 @default.
- W3043008047 cites W2788945171 @default.
- W3043008047 cites W2802651079 @default.
- W3043008047 cites W2803590506 @default.
- W3043008047 cites W2844659735 @default.
- W3043008047 cites W2906910714 @default.
- W3043008047 cites W2922006651 @default.
- W3043008047 cites W2922408548 @default.
- W3043008047 cites W2953926847 @default.
- W3043008047 cites W2957718075 @default.
- W3043008047 cites W2960526046 @default.
- W3043008047 cites W2972312312 @default.
- W3043008047 cites W2979970650 @default.
- W3043008047 cites W2991635216 @default.
- W3043008047 cites W3004095039 @default.
- W3043008047 cites W3023901488 @default.
- W3043008047 cites W4249247926 @default.
- W3043008047 doi "https://doi.org/10.3390/rs12142261" @default.
- W3043008047 hasPublicationYear "2020" @default.
- W3043008047 type Work @default.
- W3043008047 sameAs 3043008047 @default.
- W3043008047 citedByCount "11" @default.
- W3043008047 countsByYear W30430080472020 @default.
- W3043008047 countsByYear W30430080472021 @default.
- W3043008047 countsByYear W30430080472022 @default.
- W3043008047 countsByYear W30430080472023 @default.
- W3043008047 crossrefType "journal-article" @default.
- W3043008047 hasAuthorship W3043008047A5008256662 @default.
- W3043008047 hasAuthorship W3043008047A5021408538 @default.
- W3043008047 hasAuthorship W3043008047A5044570096 @default.
- W3043008047 hasAuthorship W3043008047A5045912501 @default.
- W3043008047 hasAuthorship W3043008047A5066378186 @default.
- W3043008047 hasAuthorship W3043008047A5068336830 @default.
- W3043008047 hasBestOaLocation W30430080471 @default.
- W3043008047 hasConcept C111919701 @default.
- W3043008047 hasConcept C124101348 @default.
- W3043008047 hasConcept C138885662 @default.
- W3043008047 hasConcept C153180895 @default.
- W3043008047 hasConcept C154945302 @default.
- W3043008047 hasConcept C169258074 @default.
- W3043008047 hasConcept C173163844 @default.
- W3043008047 hasConcept C205649164 @default.
- W3043008047 hasConcept C2776401178 @default.
- W3043008047 hasConcept C2778751112 @default.
- W3043008047 hasConcept C41008148 @default.
- W3043008047 hasConcept C41895202 @default.
- W3043008047 hasConcept C52622490 @default.
- W3043008047 hasConcept C62649853 @default.
- W3043008047 hasConcept C95623464 @default.
- W3043008047 hasConceptScore W3043008047C111919701 @default.
- W3043008047 hasConceptScore W3043008047C124101348 @default.
- W3043008047 hasConceptScore W3043008047C138885662 @default.
- W3043008047 hasConceptScore W3043008047C153180895 @default.
- W3043008047 hasConceptScore W3043008047C154945302 @default.
- W3043008047 hasConceptScore W3043008047C169258074 @default.
- W3043008047 hasConceptScore W3043008047C173163844 @default.
- W3043008047 hasConceptScore W3043008047C205649164 @default.
- W3043008047 hasConceptScore W3043008047C2776401178 @default.
- W3043008047 hasConceptScore W3043008047C2778751112 @default.
- W3043008047 hasConceptScore W3043008047C41008148 @default.
- W3043008047 hasConceptScore W3043008047C41895202 @default.
- W3043008047 hasConceptScore W3043008047C52622490 @default.
- W3043008047 hasConceptScore W3043008047C62649853 @default.
- W3043008047 hasConceptScore W3043008047C95623464 @default.