Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043089069> ?p ?o ?g. }
- W3043089069 abstract "Automated segmentation of brain tumors in 3D magnetic resonance imaging plays an active role in tumor diagnosis, progression monitoring and surgery planning. Based on convolutional neural networks, especially fully convolutional networks, previous studies have shown some promising technologies for brain tumor segmentation. However, these approaches lack suitable strategies to incorporate contextual information to deal with local ambiguities, leading to unsatisfactory segmentation outcomes in challenging circumstances. In this work, we propose a novel Context-Aware Network (CANet) with a Hybrid Context Aware Feature Extractor (HCA-FE) and a Context Guided Attentive Conditional Random Field (CG-ACRF) for feature fusion. HCA-FE captures high dimensional and discriminative features with the contexts from both the convolutional space and feature interaction graphs. We adopt the powerful inference ability of probabilistic graphical models to learn hidden feature maps, and then use CG-ACRF to fuse the features of different contexts. We evaluate our proposed method on publicly accessible brain tumor segmentation datasets BRATS2017 and BRATS2018 against several state-of-the-art approaches using different segmentation metrics. The experimental results show that the proposed algorithm has better or competitive performance, compared to the standard approaches." @default.
- W3043089069 created "2020-07-23" @default.
- W3043089069 creator A5009437198 @default.
- W3043089069 creator A5012268687 @default.
- W3043089069 creator A5012324763 @default.
- W3043089069 creator A5024367126 @default.
- W3043089069 creator A5025874707 @default.
- W3043089069 creator A5055478558 @default.
- W3043089069 creator A5055765857 @default.
- W3043089069 creator A5066119228 @default.
- W3043089069 creator A5067368513 @default.
- W3043089069 creator A5072861069 @default.
- W3043089069 date "2020-07-15" @default.
- W3043089069 modified "2023-09-27" @default.
- W3043089069 title "CANet: Context Aware Network for 3D Brain Tumor Segmentation." @default.
- W3043089069 cites W1551507374 @default.
- W3043089069 cites W1567270145 @default.
- W3043089069 cites W1594587862 @default.
- W3043089069 cites W1641498739 @default.
- W3043089069 cites W1805470358 @default.
- W3043089069 cites W1884191083 @default.
- W3043089069 cites W1901129140 @default.
- W3043089069 cites W1903029394 @default.
- W3043089069 cites W2078708982 @default.
- W3043089069 cites W2098056602 @default.
- W3043089069 cites W2116877738 @default.
- W3043089069 cites W2124592697 @default.
- W3043089069 cites W2128962821 @default.
- W3043089069 cites W2141739106 @default.
- W3043089069 cites W2160754664 @default.
- W3043089069 cites W2161236525 @default.
- W3043089069 cites W2194775991 @default.
- W3043089069 cites W2301358467 @default.
- W3043089069 cites W2310992461 @default.
- W3043089069 cites W2464708700 @default.
- W3043089069 cites W2529926598 @default.
- W3043089069 cites W2533800772 @default.
- W3043089069 cites W2548432457 @default.
- W3043089069 cites W2566427651 @default.
- W3043089069 cites W2587828787 @default.
- W3043089069 cites W2592929672 @default.
- W3043089069 cites W2595668780 @default.
- W3043089069 cites W2601564443 @default.
- W3043089069 cites W2613456556 @default.
- W3043089069 cites W2618677231 @default.
- W3043089069 cites W2729876886 @default.
- W3043089069 cites W2751069891 @default.
- W3043089069 cites W2767623272 @default.
- W3043089069 cites W2768546467 @default.
- W3043089069 cites W2783525651 @default.
- W3043089069 cites W2785474956 @default.
- W3043089069 cites W2787206897 @default.
- W3043089069 cites W2787845149 @default.
- W3043089069 cites W2788843631 @default.
- W3043089069 cites W2788945298 @default.
- W3043089069 cites W2798122215 @default.
- W3043089069 cites W2804902458 @default.
- W3043089069 cites W2806489700 @default.
- W3043089069 cites W2888493720 @default.
- W3043089069 cites W2895089584 @default.
- W3043089069 cites W2897666859 @default.
- W3043089069 cites W2899878531 @default.
- W3043089069 cites W2900298334 @default.
- W3043089069 cites W2911631536 @default.
- W3043089069 cites W2912063259 @default.
- W3043089069 cites W2912260230 @default.
- W3043089069 cites W2912586873 @default.
- W3043089069 cites W2913287063 @default.
- W3043089069 cites W2913425791 @default.
- W3043089069 cites W2913666538 @default.
- W3043089069 cites W2950763807 @default.
- W3043089069 cites W2963046541 @default.
- W3043089069 cites W2963276418 @default.
- W3043089069 cites W2963717741 @default.
- W3043089069 cites W2963753570 @default.
- W3043089069 cites W2964015378 @default.
- W3043089069 cites W3014512070 @default.
- W3043089069 cites W3018093250 @default.
- W3043089069 cites W3022478135 @default.
- W3043089069 cites W3028210663 @default.
- W3043089069 cites W3031101471 @default.
- W3043089069 cites W3031346872 @default.
- W3043089069 cites W3033630333 @default.
- W3043089069 cites W3035303965 @default.
- W3043089069 cites W3046002895 @default.
- W3043089069 cites W3091848392 @default.
- W3043089069 cites W3097153127 @default.
- W3043089069 cites W850948285 @default.
- W3043089069 hasPublicationYear "2020" @default.
- W3043089069 type Work @default.
- W3043089069 sameAs 3043089069 @default.
- W3043089069 citedByCount "1" @default.
- W3043089069 countsByYear W30430890692020 @default.
- W3043089069 crossrefType "posted-content" @default.
- W3043089069 hasAuthorship W3043089069A5009437198 @default.
- W3043089069 hasAuthorship W3043089069A5012268687 @default.
- W3043089069 hasAuthorship W3043089069A5012324763 @default.
- W3043089069 hasAuthorship W3043089069A5024367126 @default.
- W3043089069 hasAuthorship W3043089069A5025874707 @default.
- W3043089069 hasAuthorship W3043089069A5055478558 @default.