Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043107110> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3043107110 endingPage "012138" @default.
- W3043107110 startingPage "012138" @default.
- W3043107110 abstract "Recently, with the rise of deep reinforcement learning model, robot navigation based on this method has a huge advantage compared with traditional slam method, which has attracted extensive attention. However, when the navigation algorithm trained in the virtual environment is transferred to the real environment, the navigation performance of the robot will decline sharply because of the great difference between the virtual environment and the real environment. In order to improve the navigation ability of mobile robot, this paper implements a mobile robot navigation system based on deep reinforcement learning without environment map and only visual input. At the same time, in order to solve the problem of poor generalization ability of deep reinforcement learning from virtual environment to real environment, this paper proposes a preprocessing layer with knowledge and combines it with deep reinforcement learning module. The combined algorithm model alleviates the performance fault problem caused by the migration algorithm and the performance difference between virtual sensor and real sensor. At the end of this paper, a navigation experiment based on the turtlebot is designed, which proves that the deep reinforcement learning algorithm with the preprocessing layer can alleviate the performance fault problem caused by the migration algorithm, and have a certain ability of obstacle avoidance and avoidance without the environment map." @default.
- W3043107110 created "2020-07-23" @default.
- W3043107110 creator A5005152330 @default.
- W3043107110 creator A5037527736 @default.
- W3043107110 creator A5051150266 @default.
- W3043107110 creator A5073839526 @default.
- W3043107110 date "2020-06-01" @default.
- W3043107110 modified "2023-09-25" @default.
- W3043107110 title "Research on Target-Driven Navigation of Mobile Robot Based on Deep Reinforcement Learning and Preprocessing Layer" @default.
- W3043107110 cites W1998768736 @default.
- W3043107110 cites W2109749443 @default.
- W3043107110 cites W2145339207 @default.
- W3043107110 doi "https://doi.org/10.1088/1742-6596/1575/1/012138" @default.
- W3043107110 hasPublicationYear "2020" @default.
- W3043107110 type Work @default.
- W3043107110 sameAs 3043107110 @default.
- W3043107110 citedByCount "0" @default.
- W3043107110 crossrefType "journal-article" @default.
- W3043107110 hasAuthorship W3043107110A5005152330 @default.
- W3043107110 hasAuthorship W3043107110A5037527736 @default.
- W3043107110 hasAuthorship W3043107110A5051150266 @default.
- W3043107110 hasAuthorship W3043107110A5073839526 @default.
- W3043107110 hasBestOaLocation W30431071101 @default.
- W3043107110 hasConcept C108583219 @default.
- W3043107110 hasConcept C111919701 @default.
- W3043107110 hasConcept C154945302 @default.
- W3043107110 hasConcept C19966478 @default.
- W3043107110 hasConcept C25344961 @default.
- W3043107110 hasConcept C26990112 @default.
- W3043107110 hasConcept C31972630 @default.
- W3043107110 hasConcept C41008148 @default.
- W3043107110 hasConcept C65401140 @default.
- W3043107110 hasConcept C6683253 @default.
- W3043107110 hasConcept C79403827 @default.
- W3043107110 hasConcept C90509273 @default.
- W3043107110 hasConcept C97541855 @default.
- W3043107110 hasConceptScore W3043107110C108583219 @default.
- W3043107110 hasConceptScore W3043107110C111919701 @default.
- W3043107110 hasConceptScore W3043107110C154945302 @default.
- W3043107110 hasConceptScore W3043107110C19966478 @default.
- W3043107110 hasConceptScore W3043107110C25344961 @default.
- W3043107110 hasConceptScore W3043107110C26990112 @default.
- W3043107110 hasConceptScore W3043107110C31972630 @default.
- W3043107110 hasConceptScore W3043107110C41008148 @default.
- W3043107110 hasConceptScore W3043107110C65401140 @default.
- W3043107110 hasConceptScore W3043107110C6683253 @default.
- W3043107110 hasConceptScore W3043107110C79403827 @default.
- W3043107110 hasConceptScore W3043107110C90509273 @default.
- W3043107110 hasConceptScore W3043107110C97541855 @default.
- W3043107110 hasLocation W30431071101 @default.
- W3043107110 hasOpenAccess W3043107110 @default.
- W3043107110 hasPrimaryLocation W30431071101 @default.
- W3043107110 hasRelatedWork W1941772210 @default.
- W3043107110 hasRelatedWork W1995274592 @default.
- W3043107110 hasRelatedWork W2000747543 @default.
- W3043107110 hasRelatedWork W2059108730 @default.
- W3043107110 hasRelatedWork W2104030031 @default.
- W3043107110 hasRelatedWork W2116298349 @default.
- W3043107110 hasRelatedWork W2119321324 @default.
- W3043107110 hasRelatedWork W2151698195 @default.
- W3043107110 hasRelatedWork W2166504097 @default.
- W3043107110 hasRelatedWork W2965672371 @default.
- W3043107110 hasVolume "1575" @default.
- W3043107110 isParatext "false" @default.
- W3043107110 isRetracted "false" @default.
- W3043107110 magId "3043107110" @default.
- W3043107110 workType "article" @default.