Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043116777> ?p ?o ?g. }
- W3043116777 endingPage "131272" @default.
- W3043116777 startingPage "131257" @default.
- W3043116777 abstract "Devising automated procedures for accurate vessel segmentation (retinal) is crucial for timely prognosis of vision-threatening eye diseases. In this paper, a novel supervised deep learning-based approach is proposed which extends a variant of the fully convolutional neural network. The existing fully convolutional neural network-based counterparts have associated critical drawbacks of involving a large number of tunable hyper-parameters and an increased end-to-end training time furnished by their decoder structure. The proposed approach addresses these intricate challenges by using a skip-connections strategy by sharing indices obtained through max-pooling to the decoder from the encoder stage (respective stages) for enhancing the resolution of the feature map. This significantly reduces the number of required tunable hyper-parameters and the computational overhead of the training as well as testing stages. Furthermore, the proposed approach particularly helps in eradicating the requirement for employing both post-processing and pre-processing steps. In the proposed approach, the retinal vessel segmentation problem is formulated as a semantic pixel-wise segmentation task which helps in spanning the gap between semantic segmentation and medical image segmentation. A prime contribution of the proposed approach is the introduction of external skip-connection for passing the preserved low-level semantic edge information in order to reliably detect tiny vessels in the retinal fundus images. The performance of the proposed scheme is analyzed based on the three publicly available notable fundus image datasets, while the widely recognized evaluation metrics of specificity, sensitivity, accuracy, and the Receiver Operating Characteristics curves are used. Based on the assessment of the images in {DRIVE, CHASE_DB1, and STARE}; datasets, the proposed approach achieves a sensitivity, specificity, accuracy, and ROC performance of {0.8252, 0.8440, and 0.8397};, {0.9787, 0.9810, and 0.9792};, {0.9649, 0.9722, and 0.9659};, and {0.9780, 0.9830, and 0.9810};, respectively. The reduced computational complexity and memory overhead along with improved segmentation performance advocates employing the proposed approach in the automated diagnostic systems for eye diseases." @default.
- W3043116777 created "2020-07-23" @default.
- W3043116777 creator A5014562556 @default.
- W3043116777 creator A5014712593 @default.
- W3043116777 creator A5025982138 @default.
- W3043116777 creator A5034970020 @default.
- W3043116777 creator A5052648906 @default.
- W3043116777 creator A5055990973 @default.
- W3043116777 date "2020-01-01" @default.
- W3043116777 modified "2023-10-13" @default.
- W3043116777 title "Residual Connection-Based Encoder Decoder Network (RCED-Net) for Retinal Vessel Segmentation" @default.
- W3043116777 cites W1588143347 @default.
- W3043116777 cites W1610707153 @default.
- W3043116777 cites W1913356549 @default.
- W3043116777 cites W1974954013 @default.
- W3043116777 cites W1978174623 @default.
- W3043116777 cites W1979167658 @default.
- W3043116777 cites W2010965043 @default.
- W3043116777 cites W2022508996 @default.
- W3043116777 cites W2033723371 @default.
- W3043116777 cites W2034513030 @default.
- W3043116777 cites W2037776979 @default.
- W3043116777 cites W2038469443 @default.
- W3043116777 cites W2044880603 @default.
- W3043116777 cites W2051578148 @default.
- W3043116777 cites W2069410893 @default.
- W3043116777 cites W2073244572 @default.
- W3043116777 cites W2100072940 @default.
- W3043116777 cites W2105685332 @default.
- W3043116777 cites W2105839704 @default.
- W3043116777 cites W2109037308 @default.
- W3043116777 cites W2112783556 @default.
- W3043116777 cites W2116628223 @default.
- W3043116777 cites W2128457244 @default.
- W3043116777 cites W2131223615 @default.
- W3043116777 cites W2132519114 @default.
- W3043116777 cites W2139915254 @default.
- W3043116777 cites W2145305441 @default.
- W3043116777 cites W2148284840 @default.
- W3043116777 cites W2150769593 @default.
- W3043116777 cites W2163344010 @default.
- W3043116777 cites W2175751043 @default.
- W3043116777 cites W2206167351 @default.
- W3043116777 cites W2320230300 @default.
- W3043116777 cites W2395611524 @default.
- W3043116777 cites W2488605601 @default.
- W3043116777 cites W2556022279 @default.
- W3043116777 cites W2681937508 @default.
- W3043116777 cites W2775021684 @default.
- W3043116777 cites W2791643320 @default.
- W3043116777 cites W2794329395 @default.
- W3043116777 cites W2802388893 @default.
- W3043116777 cites W2886433032 @default.
- W3043116777 cites W2893610713 @default.
- W3043116777 cites W2898910301 @default.
- W3043116777 cites W2899540788 @default.
- W3043116777 cites W2906455801 @default.
- W3043116777 cites W2919733445 @default.
- W3043116777 cites W2935464137 @default.
- W3043116777 cites W2940427983 @default.
- W3043116777 cites W2946133851 @default.
- W3043116777 cites W2946570412 @default.
- W3043116777 cites W2963881378 @default.
- W3043116777 cites W2964309882 @default.
- W3043116777 cites W2971614929 @default.
- W3043116777 cites W2972096900 @default.
- W3043116777 cites W2980026441 @default.
- W3043116777 cites W2984146701 @default.
- W3043116777 cites W2986274801 @default.
- W3043116777 cites W3005643343 @default.
- W3043116777 cites W3010503111 @default.
- W3043116777 doi "https://doi.org/10.1109/access.2020.3008899" @default.
- W3043116777 hasPublicationYear "2020" @default.
- W3043116777 type Work @default.
- W3043116777 sameAs 3043116777 @default.
- W3043116777 citedByCount "40" @default.
- W3043116777 countsByYear W30431167772020 @default.
- W3043116777 countsByYear W30431167772021 @default.
- W3043116777 countsByYear W30431167772022 @default.
- W3043116777 countsByYear W30431167772023 @default.
- W3043116777 crossrefType "journal-article" @default.
- W3043116777 hasAuthorship W3043116777A5014562556 @default.
- W3043116777 hasAuthorship W3043116777A5014712593 @default.
- W3043116777 hasAuthorship W3043116777A5025982138 @default.
- W3043116777 hasAuthorship W3043116777A5034970020 @default.
- W3043116777 hasAuthorship W3043116777A5052648906 @default.
- W3043116777 hasAuthorship W3043116777A5055990973 @default.
- W3043116777 hasBestOaLocation W30431167771 @default.
- W3043116777 hasConcept C111919701 @default.
- W3043116777 hasConcept C11413529 @default.
- W3043116777 hasConcept C118505674 @default.
- W3043116777 hasConcept C154945302 @default.
- W3043116777 hasConcept C155512373 @default.
- W3043116777 hasConcept C31972630 @default.
- W3043116777 hasConcept C41008148 @default.
- W3043116777 hasConcept C57273362 @default.
- W3043116777 hasConcept C89600930 @default.
- W3043116777 hasConceptScore W3043116777C111919701 @default.