Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043122921> ?p ?o ?g. }
- W3043122921 endingPage "113729" @default.
- W3043122921 startingPage "113729" @default.
- W3043122921 abstract "In this paper, we propose a novel support vector regression (SVR) approach for time series analysis. An efficient forward feature selection strategy has been designed for dealing with high-frequency time series with multiple seasonal periods. Inspired by the literature on feature selection for support vector classification, we designed a technique for assessing the contribution of additional covariates to the SVR solution, including them in a forward fashion. Our strategy extends the reasoning behind Auto-ARIMA, a well-known approach for automatic model specification for traditional time series analysis, to kernel machines. Experiments on well-known high-frequency datasets demonstrate the virtues of the proposed method in terms of predictive performance, confirming the virtues of an automatic model specification strategy and the use of nonlinear predictors in time series forecasting. Our empirical analysis focus on the energy load forecasting task, which is arguably the most popular application for high-frequency, multi-seasonal time series forecasting." @default.
- W3043122921 created "2020-07-23" @default.
- W3043122921 creator A5007513550 @default.
- W3043122921 creator A5041379206 @default.
- W3043122921 date "2020-12-01" @default.
- W3043122921 modified "2023-10-11" @default.
- W3043122921 title "SVR-FFS: A novel forward feature selection approach for high-frequency time series forecasting using support vector regression" @default.
- W3043122921 cites W1596031719 @default.
- W3043122921 cites W1971110693 @default.
- W3043122921 cites W1980223370 @default.
- W3043122921 cites W2005424446 @default.
- W3043122921 cites W2028072219 @default.
- W3043122921 cites W2031489288 @default.
- W3043122921 cites W2048665112 @default.
- W3043122921 cites W2067576900 @default.
- W3043122921 cites W2069928051 @default.
- W3043122921 cites W2069945715 @default.
- W3043122921 cites W2071458000 @default.
- W3043122921 cites W2075811533 @default.
- W3043122921 cites W2076163358 @default.
- W3043122921 cites W2080878870 @default.
- W3043122921 cites W2080924928 @default.
- W3043122921 cites W2103504194 @default.
- W3043122921 cites W2107956883 @default.
- W3043122921 cites W2109316012 @default.
- W3043122921 cites W2116048577 @default.
- W3043122921 cites W2116512828 @default.
- W3043122921 cites W2131534673 @default.
- W3043122921 cites W2133720763 @default.
- W3043122921 cites W2143426320 @default.
- W3043122921 cites W2151203917 @default.
- W3043122921 cites W2151767444 @default.
- W3043122921 cites W2153240444 @default.
- W3043122921 cites W2154053567 @default.
- W3043122921 cites W2154506590 @default.
- W3043122921 cites W2156636680 @default.
- W3043122921 cites W2159118434 @default.
- W3043122921 cites W2172064003 @default.
- W3043122921 cites W2210487714 @default.
- W3043122921 cites W2593370983 @default.
- W3043122921 cites W2604162004 @default.
- W3043122921 cites W2756063524 @default.
- W3043122921 cites W2790382573 @default.
- W3043122921 cites W2792730533 @default.
- W3043122921 cites W2894703696 @default.
- W3043122921 cites W2904707438 @default.
- W3043122921 cites W2940200036 @default.
- W3043122921 cites W2955450288 @default.
- W3043122921 cites W2962716677 @default.
- W3043122921 cites W4251163770 @default.
- W3043122921 cites W770464002 @default.
- W3043122921 cites W2089155247 @default.
- W3043122921 doi "https://doi.org/10.1016/j.eswa.2020.113729" @default.
- W3043122921 hasPublicationYear "2020" @default.
- W3043122921 type Work @default.
- W3043122921 sameAs 3043122921 @default.
- W3043122921 citedByCount "33" @default.
- W3043122921 countsByYear W30431229212021 @default.
- W3043122921 countsByYear W30431229212022 @default.
- W3043122921 countsByYear W30431229212023 @default.
- W3043122921 crossrefType "journal-article" @default.
- W3043122921 hasAuthorship W3043122921A5007513550 @default.
- W3043122921 hasAuthorship W3043122921A5041379206 @default.
- W3043122921 hasConcept C114614502 @default.
- W3043122921 hasConcept C119857082 @default.
- W3043122921 hasConcept C12267149 @default.
- W3043122921 hasConcept C124101348 @default.
- W3043122921 hasConcept C138885662 @default.
- W3043122921 hasConcept C143724316 @default.
- W3043122921 hasConcept C148483581 @default.
- W3043122921 hasConcept C151406439 @default.
- W3043122921 hasConcept C151730666 @default.
- W3043122921 hasConcept C154945302 @default.
- W3043122921 hasConcept C24338571 @default.
- W3043122921 hasConcept C2776401178 @default.
- W3043122921 hasConcept C33923547 @default.
- W3043122921 hasConcept C41008148 @default.
- W3043122921 hasConcept C41895202 @default.
- W3043122921 hasConcept C74193536 @default.
- W3043122921 hasConcept C81917197 @default.
- W3043122921 hasConcept C83665646 @default.
- W3043122921 hasConcept C86803240 @default.
- W3043122921 hasConceptScore W3043122921C114614502 @default.
- W3043122921 hasConceptScore W3043122921C119857082 @default.
- W3043122921 hasConceptScore W3043122921C12267149 @default.
- W3043122921 hasConceptScore W3043122921C124101348 @default.
- W3043122921 hasConceptScore W3043122921C138885662 @default.
- W3043122921 hasConceptScore W3043122921C143724316 @default.
- W3043122921 hasConceptScore W3043122921C148483581 @default.
- W3043122921 hasConceptScore W3043122921C151406439 @default.
- W3043122921 hasConceptScore W3043122921C151730666 @default.
- W3043122921 hasConceptScore W3043122921C154945302 @default.
- W3043122921 hasConceptScore W3043122921C24338571 @default.
- W3043122921 hasConceptScore W3043122921C2776401178 @default.
- W3043122921 hasConceptScore W3043122921C33923547 @default.
- W3043122921 hasConceptScore W3043122921C41008148 @default.
- W3043122921 hasConceptScore W3043122921C41895202 @default.
- W3043122921 hasConceptScore W3043122921C74193536 @default.