Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043132288> ?p ?o ?g. }
- W3043132288 endingPage "194" @default.
- W3043132288 startingPage "169" @default.
- W3043132288 abstract "The synthesis of new molecules is essential for progress in various sectors within the chemical industry and academia. Medicinal and materials chemistry are two examples. Searching through vast regions of chemical space for routes to new molecules is a time-consuming process carried out by expert synthetic chemists. The use of machine learning and artificial intelligence for synthetic chemistry is rapidly expanding, the aim being to reduce the timelines of chemical syntheses. Tools, which predict products of chemical reactions and design retrosynthetic routes, are attracting particular attention. Emerging computer-aided synthesis design (CASD) programs are not intended to replace synthetic chemists but to aid them in everyday decision making. The incorporation of condition optimisation and reaction performance is highly desirable. Combining such tools with an automated synthesis testing module holds much promise for the future of reaction condition optimisation. To achieve the desired progress in, and acceptance of CASD, there are a few challenges that need to be addressed." @default.
- W3043132288 created "2020-07-23" @default.
- W3043132288 creator A5010844897 @default.
- W3043132288 creator A5023538863 @default.
- W3043132288 creator A5040368000 @default.
- W3043132288 creator A5058881545 @default.
- W3043132288 creator A5059593105 @default.
- W3043132288 creator A5061276734 @default.
- W3043132288 date "2020-07-21" @default.
- W3043132288 modified "2023-09-27" @default.
- W3043132288 title "Machine Learning for Chemical Synthesis" @default.
- W3043132288 cites W1498436455 @default.
- W3043132288 cites W1891999817 @default.
- W3043132288 cites W1980801609 @default.
- W3043132288 cites W1997974358 @default.
- W3043132288 cites W2001496974 @default.
- W3043132288 cites W2052882499 @default.
- W3043132288 cites W2056701057 @default.
- W3043132288 cites W2060586571 @default.
- W3043132288 cites W2064535969 @default.
- W3043132288 cites W2099657218 @default.
- W3043132288 cites W2111918027 @default.
- W3043132288 cites W2159365757 @default.
- W3043132288 cites W2319614057 @default.
- W3043132288 cites W2324964582 @default.
- W3043132288 cites W2325811289 @default.
- W3043132288 cites W2326892341 @default.
- W3043132288 cites W2347129741 @default.
- W3043132288 cites W2523785361 @default.
- W3043132288 cites W2551217916 @default.
- W3043132288 cites W2580919858 @default.
- W3043132288 cites W2606363443 @default.
- W3043132288 cites W2621742623 @default.
- W3043132288 cites W2747592475 @default.
- W3043132288 cites W2769423117 @default.
- W3043132288 cites W2769756736 @default.
- W3043132288 cites W2785942661 @default.
- W3043132288 cites W2789615344 @default.
- W3043132288 cites W2791657723 @default.
- W3043132288 cites W2792880831 @default.
- W3043132288 cites W2797857668 @default.
- W3043132288 cites W2799620402 @default.
- W3043132288 cites W2888349794 @default.
- W3043132288 cites W2901942917 @default.
- W3043132288 cites W2903262661 @default.
- W3043132288 cites W2908778936 @default.
- W3043132288 cites W2910222073 @default.
- W3043132288 cites W2918239264 @default.
- W3043132288 cites W2947835681 @default.
- W3043132288 cites W2950955377 @default.
- W3043132288 cites W2951712956 @default.
- W3043132288 cites W2959165901 @default.
- W3043132288 cites W2963459284 @default.
- W3043132288 cites W2969507301 @default.
- W3043132288 cites W2970764640 @default.
- W3043132288 cites W3100545487 @default.
- W3043132288 cites W3103092523 @default.
- W3043132288 cites W3104508774 @default.
- W3043132288 doi "https://doi.org/10.1039/9781839160233-00169" @default.
- W3043132288 hasPublicationYear "2020" @default.
- W3043132288 type Work @default.
- W3043132288 sameAs 3043132288 @default.
- W3043132288 citedByCount "4" @default.
- W3043132288 countsByYear W30431322882021 @default.
- W3043132288 crossrefType "book-chapter" @default.
- W3043132288 hasAuthorship W3043132288A5010844897 @default.
- W3043132288 hasAuthorship W3043132288A5023538863 @default.
- W3043132288 hasAuthorship W3043132288A5040368000 @default.
- W3043132288 hasAuthorship W3043132288A5058881545 @default.
- W3043132288 hasAuthorship W3043132288A5059593105 @default.
- W3043132288 hasAuthorship W3043132288A5061276734 @default.
- W3043132288 hasConcept C111919701 @default.
- W3043132288 hasConcept C127413603 @default.
- W3043132288 hasConcept C166957645 @default.
- W3043132288 hasConcept C178790620 @default.
- W3043132288 hasConcept C183696295 @default.
- W3043132288 hasConcept C185592680 @default.
- W3043132288 hasConcept C35753019 @default.
- W3043132288 hasConcept C41008148 @default.
- W3043132288 hasConcept C42437451 @default.
- W3043132288 hasConcept C4438859 @default.
- W3043132288 hasConcept C55493867 @default.
- W3043132288 hasConcept C74187038 @default.
- W3043132288 hasConcept C95457728 @default.
- W3043132288 hasConcept C98045186 @default.
- W3043132288 hasConcept C99726746 @default.
- W3043132288 hasConceptScore W3043132288C111919701 @default.
- W3043132288 hasConceptScore W3043132288C127413603 @default.
- W3043132288 hasConceptScore W3043132288C166957645 @default.
- W3043132288 hasConceptScore W3043132288C178790620 @default.
- W3043132288 hasConceptScore W3043132288C183696295 @default.
- W3043132288 hasConceptScore W3043132288C185592680 @default.
- W3043132288 hasConceptScore W3043132288C35753019 @default.
- W3043132288 hasConceptScore W3043132288C41008148 @default.
- W3043132288 hasConceptScore W3043132288C42437451 @default.
- W3043132288 hasConceptScore W3043132288C4438859 @default.
- W3043132288 hasConceptScore W3043132288C55493867 @default.
- W3043132288 hasConceptScore W3043132288C74187038 @default.