Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043132814> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3043132814 abstract "This thesis is concerned with solutions to nonlinear evolution equations. In particular we examine two specific equations; the Davey-Stewartson (DS) equation and the three-dimensional three-wave resonant interaction equation. More precisely we are interested in the role that grammians play in determining new solutions to three-dimensional three-wave resonant interactions (3D3WR), through Hirota's bilinear method [42] and the binary Darboux transformation [70]. We also exploit the grammian structure to obtain rational solutions to the DS equation. The thesis is organised as follows. Chapter one is an introduction to the concepts, ideas and constructions that will be used throughout this thesis. We discuss bilinear equations, Laplace expansions of determinants and grammians, all with a view to their role in obtaining solutions to nonlinear evolution equations. The chapter attempts to provide an overall framework for the work that follows and an outline of the connections between the chapters. We also try and consider the motivation for working with a grammian approach. In chapter two we focus on the DS equation with non-zero background, and in particular rational solutions for it. After background material to the DS equation and its derivation, we look more closely at methods that already exist to obtain solutions. Our aim is to provide a simple way to calculate rational solutions to the DS equation. The example of the KP equation [66] [7], and Gilson and Nimmo's work [35] provides the approach we need. We verify a broad class of solutions all written in terms of a grammian and from these we obtain singular rational solutions by exploiting the long-wave limit. However, by relaxing the necessary reality conditions we may obtain rational solutions from a general grammian. By then verifying when these are solutions to the DS equation we obtain a wider class of rational solutions. This mirrors the approach of Ablowitz and Satsuma [89]. It leads us to determine a class of non-singular rational solutions which describe multiple collisions of lumps. These lumps correspond to the ones found by Ablowitz and Satsuma but the grammian method is simpler and the solutions more fully rational. In chapter three we consider 3D3WR using a bilinear approach to investigate a broad class of solutions. The solutions to 3D3WR described originally by Kaup [52] [51], can easily be recast in terms of grammians. This approach arises naturally by considering the Painleve analysis for 3D3WR [31], through which we recover Kaup's Backlund transformation and the bilinear form. Kaup's solutions are generalised to give the n-lump solution, and then we prove a general grammian solution by using a Jacobi identity. Finally in chapter three we examine some specific examples of the lump solutions and provide some idea of what the solutions look like. The work in this chapter constitutes [37]. We stay with 3D3WR in chapter four. By focusing on its scattering problem and using the method developed by Nimmo [78] we derive Darboux transformations (DT) and binary Darboux transformations (BDT). It turns out that only the BDT pre-serves the structure that we need for a solution to 3D3WR and these are written in a grammian format. By determining a closed form of the solution to the iterated BDT we see that it corresponds to the lump solutions of chapter three. This provides a link between the Backlund transformation of Kaup [51] and the BDT. We look briefly at obtaining a discrete version of 3D3WR from the BDT. Chapter five seeks to bring together the results of the various chapters and again identify the common theme of the grammian. We also discuss some open questions that arise from the work presented." @default.
- W3043132814 created "2020-07-23" @default.
- W3043132814 creator A5034171299 @default.
- W3043132814 date "1998-01-01" @default.
- W3043132814 modified "2023-09-27" @default.
- W3043132814 title "Grammians in nonlinear evolution equations" @default.
- W3043132814 hasPublicationYear "1998" @default.
- W3043132814 type Work @default.
- W3043132814 sameAs 3043132814 @default.
- W3043132814 citedByCount "0" @default.
- W3043132814 crossrefType "dissertation" @default.
- W3043132814 hasAuthorship W3043132814A5034171299 @default.
- W3043132814 hasConcept C105795698 @default.
- W3043132814 hasConcept C111472728 @default.
- W3043132814 hasConcept C121332964 @default.
- W3043132814 hasConcept C134306372 @default.
- W3043132814 hasConcept C136119220 @default.
- W3043132814 hasConcept C138885662 @default.
- W3043132814 hasConcept C158622935 @default.
- W3043132814 hasConcept C158693339 @default.
- W3043132814 hasConcept C202444582 @default.
- W3043132814 hasConcept C205203396 @default.
- W3043132814 hasConcept C2780586882 @default.
- W3043132814 hasConcept C28826006 @default.
- W3043132814 hasConcept C33923547 @default.
- W3043132814 hasConcept C62520636 @default.
- W3043132814 hasConcept C77246614 @default.
- W3043132814 hasConcept C8828549 @default.
- W3043132814 hasConcept C97937538 @default.
- W3043132814 hasConceptScore W3043132814C105795698 @default.
- W3043132814 hasConceptScore W3043132814C111472728 @default.
- W3043132814 hasConceptScore W3043132814C121332964 @default.
- W3043132814 hasConceptScore W3043132814C134306372 @default.
- W3043132814 hasConceptScore W3043132814C136119220 @default.
- W3043132814 hasConceptScore W3043132814C138885662 @default.
- W3043132814 hasConceptScore W3043132814C158622935 @default.
- W3043132814 hasConceptScore W3043132814C158693339 @default.
- W3043132814 hasConceptScore W3043132814C202444582 @default.
- W3043132814 hasConceptScore W3043132814C205203396 @default.
- W3043132814 hasConceptScore W3043132814C2780586882 @default.
- W3043132814 hasConceptScore W3043132814C28826006 @default.
- W3043132814 hasConceptScore W3043132814C33923547 @default.
- W3043132814 hasConceptScore W3043132814C62520636 @default.
- W3043132814 hasConceptScore W3043132814C77246614 @default.
- W3043132814 hasConceptScore W3043132814C8828549 @default.
- W3043132814 hasConceptScore W3043132814C97937538 @default.
- W3043132814 hasLocation W30431328141 @default.
- W3043132814 hasOpenAccess W3043132814 @default.
- W3043132814 hasPrimaryLocation W30431328141 @default.
- W3043132814 hasRelatedWork W10431993 @default.
- W3043132814 hasRelatedWork W1043690781 @default.
- W3043132814 hasRelatedWork W1502653669 @default.
- W3043132814 hasRelatedWork W1510365635 @default.
- W3043132814 hasRelatedWork W1618423450 @default.
- W3043132814 hasRelatedWork W1663356416 @default.
- W3043132814 hasRelatedWork W1999717221 @default.
- W3043132814 hasRelatedWork W2084963767 @default.
- W3043132814 hasRelatedWork W2505514829 @default.
- W3043132814 hasRelatedWork W2728218654 @default.
- W3043132814 hasRelatedWork W2761161999 @default.
- W3043132814 hasRelatedWork W2798809012 @default.
- W3043132814 hasRelatedWork W2952162821 @default.
- W3043132814 hasRelatedWork W2966609299 @default.
- W3043132814 hasRelatedWork W2978819269 @default.
- W3043132814 hasRelatedWork W2997285275 @default.
- W3043132814 hasRelatedWork W3021587328 @default.
- W3043132814 hasRelatedWork W3107677108 @default.
- W3043132814 hasRelatedWork W3128256072 @default.
- W3043132814 hasRelatedWork W2473365836 @default.
- W3043132814 isParatext "false" @default.
- W3043132814 isRetracted "false" @default.
- W3043132814 magId "3043132814" @default.
- W3043132814 workType "dissertation" @default.