Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043156944> ?p ?o ?g. }
- W3043156944 endingPage "1181" @default.
- W3043156944 startingPage "1181" @default.
- W3043156944 abstract "The tail value at risk at level p, with p ∈ ( 0 , 1 ) , is a risk measure that captures the tail risk of losses and asset return distributions beyond the p quantile. Given two distributions, it can be used to decide which is riskier. When the tail values at risk of both distributions agree, whenever the probability level p ∈ ( 0 , 1 ) , about which of them is riskier, then the distributions are ordered in terms of the increasing convex order. The price to pay for such a unanimous agreement is that it is possible that two distributions cannot be compared despite our intuition that one is less risky than the other. In this paper, we introduce a family of stochastic orders, indexed by confidence levels p 0 ∈ ( 0 , 1 ) , that require agreement of tail values at risk only for levels p > p 0 . We study its main properties and compare it with other families of stochastic orders that have been proposed in the literature to compare tail risks. We illustrate the results with a real data example." @default.
- W3043156944 created "2020-07-23" @default.
- W3043156944 creator A5071506540 @default.
- W3043156944 creator A5080085567 @default.
- W3043156944 creator A5090616836 @default.
- W3043156944 creator A5091879155 @default.
- W3043156944 date "2020-07-18" @default.
- W3043156944 modified "2023-10-18" @default.
- W3043156944 title "On Partial Stochastic Comparisons Based on Tail Values at Risk" @default.
- W3043156944 cites W1976381149 @default.
- W3043156944 cites W2027564472 @default.
- W3043156944 cites W2032705861 @default.
- W3043156944 cites W2035588624 @default.
- W3043156944 cites W2071792647 @default.
- W3043156944 cites W2089577032 @default.
- W3043156944 cites W2121464276 @default.
- W3043156944 cites W2149259910 @default.
- W3043156944 cites W2626329669 @default.
- W3043156944 cites W2626969374 @default.
- W3043156944 cites W2750201565 @default.
- W3043156944 cites W3016885282 @default.
- W3043156944 cites W3124675969 @default.
- W3043156944 doi "https://doi.org/10.3390/math8071181" @default.
- W3043156944 hasPublicationYear "2020" @default.
- W3043156944 type Work @default.
- W3043156944 sameAs 3043156944 @default.
- W3043156944 citedByCount "1" @default.
- W3043156944 countsByYear W30431569442020 @default.
- W3043156944 crossrefType "journal-article" @default.
- W3043156944 hasAuthorship W3043156944A5071506540 @default.
- W3043156944 hasAuthorship W3043156944A5080085567 @default.
- W3043156944 hasAuthorship W3043156944A5090616836 @default.
- W3043156944 hasAuthorship W3043156944A5091879155 @default.
- W3043156944 hasBestOaLocation W30431569441 @default.
- W3043156944 hasConcept C10138342 @default.
- W3043156944 hasConcept C105795698 @default.
- W3043156944 hasConcept C106159729 @default.
- W3043156944 hasConcept C112680207 @default.
- W3043156944 hasConcept C118671147 @default.
- W3043156944 hasConcept C132010649 @default.
- W3043156944 hasConcept C147581598 @default.
- W3043156944 hasConcept C148845407 @default.
- W3043156944 hasConcept C149782125 @default.
- W3043156944 hasConcept C15744967 @default.
- W3043156944 hasConcept C162324750 @default.
- W3043156944 hasConcept C188147891 @default.
- W3043156944 hasConcept C2524010 @default.
- W3043156944 hasConcept C2780821815 @default.
- W3043156944 hasConcept C2781472820 @default.
- W3043156944 hasConcept C32645036 @default.
- W3043156944 hasConcept C32896092 @default.
- W3043156944 hasConcept C33252445 @default.
- W3043156944 hasConcept C33923547 @default.
- W3043156944 hasConcept C44082924 @default.
- W3043156944 hasConcept C5496284 @default.
- W3043156944 hasConcept C94128290 @default.
- W3043156944 hasConceptScore W3043156944C10138342 @default.
- W3043156944 hasConceptScore W3043156944C105795698 @default.
- W3043156944 hasConceptScore W3043156944C106159729 @default.
- W3043156944 hasConceptScore W3043156944C112680207 @default.
- W3043156944 hasConceptScore W3043156944C118671147 @default.
- W3043156944 hasConceptScore W3043156944C132010649 @default.
- W3043156944 hasConceptScore W3043156944C147581598 @default.
- W3043156944 hasConceptScore W3043156944C148845407 @default.
- W3043156944 hasConceptScore W3043156944C149782125 @default.
- W3043156944 hasConceptScore W3043156944C15744967 @default.
- W3043156944 hasConceptScore W3043156944C162324750 @default.
- W3043156944 hasConceptScore W3043156944C188147891 @default.
- W3043156944 hasConceptScore W3043156944C2524010 @default.
- W3043156944 hasConceptScore W3043156944C2780821815 @default.
- W3043156944 hasConceptScore W3043156944C2781472820 @default.
- W3043156944 hasConceptScore W3043156944C32645036 @default.
- W3043156944 hasConceptScore W3043156944C32896092 @default.
- W3043156944 hasConceptScore W3043156944C33252445 @default.
- W3043156944 hasConceptScore W3043156944C33923547 @default.
- W3043156944 hasConceptScore W3043156944C44082924 @default.
- W3043156944 hasConceptScore W3043156944C5496284 @default.
- W3043156944 hasConceptScore W3043156944C94128290 @default.
- W3043156944 hasIssue "7" @default.
- W3043156944 hasLocation W30431569441 @default.
- W3043156944 hasLocation W30431569442 @default.
- W3043156944 hasLocation W30431569443 @default.
- W3043156944 hasOpenAccess W3043156944 @default.
- W3043156944 hasPrimaryLocation W30431569441 @default.
- W3043156944 hasRelatedWork W2026536621 @default.
- W3043156944 hasRelatedWork W2114527257 @default.
- W3043156944 hasRelatedWork W2126123508 @default.
- W3043156944 hasRelatedWork W2208800437 @default.
- W3043156944 hasRelatedWork W2346600303 @default.
- W3043156944 hasRelatedWork W2950475626 @default.
- W3043156944 hasRelatedWork W3043156944 @default.
- W3043156944 hasRelatedWork W4313244896 @default.
- W3043156944 hasRelatedWork W2614970697 @default.
- W3043156944 hasRelatedWork W3111963867 @default.
- W3043156944 hasVolume "8" @default.
- W3043156944 isParatext "false" @default.
- W3043156944 isRetracted "false" @default.
- W3043156944 magId "3043156944" @default.