Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043160233> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3043160233 endingPage "106552" @default.
- W3043160233 startingPage "106552" @default.
- W3043160233 abstract "Abstract The compressive strength of Ultra-High Performance Concrete (UHPC) is a function of the type, property and quantities of its material constituents. Empirically capturing this relationship often requires the utilization of intelligent algorithms, such as the Artificial Neural Network (ANN), to derive a predictive model that fits into an experimental dataset. However, its black-box nature prevents researchers from mathematically describing its contents. This paper attempts to address this ambiguity by employing two deep machine learning techniques – Sequential Feature Selection (SFS) and Neural Interpretation Diagram (NID) – to identify the critical material constituents that affect the ANN. 110 UHPC compressive strength tests varying based on the material quantities were compiled into a database to train the ANN. As a result, four material constituents were selected; mainly, cement, fly ash, silica fume and water. These material constituents were then employed into the ANN to compute more accurate predictions (r 2 = 80 .1% and NMSE = 0.012) than the model with all eight material constituents (r 2 = 21 .5% and NMSE = 0.035). Finally, a nonlinear regression model based on the four selected material constituents was developed and a parametric study was conducted. It was concluded that the utilization of ANN with SFS and NID drastically improved the accuracy of the model, and provided valuable insights on the ANN compressive strength predictions for different UHPC mixes." @default.
- W3043160233 created "2020-07-23" @default.
- W3043160233 creator A5024510510 @default.
- W3043160233 creator A5034541188 @default.
- W3043160233 creator A5038410374 @default.
- W3043160233 date "2020-10-01" @default.
- W3043160233 modified "2023-10-02" @default.
- W3043160233 title "Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques" @default.
- W3043160233 cites W1970993721 @default.
- W3043160233 cites W1980320038 @default.
- W3043160233 cites W1983453301 @default.
- W3043160233 cites W1984313001 @default.
- W3043160233 cites W1985091162 @default.
- W3043160233 cites W1987428902 @default.
- W3043160233 cites W1988199853 @default.
- W3043160233 cites W2002568865 @default.
- W3043160233 cites W2004330510 @default.
- W3043160233 cites W2017337590 @default.
- W3043160233 cites W2033745335 @default.
- W3043160233 cites W2041913077 @default.
- W3043160233 cites W2044917120 @default.
- W3043160233 cites W2047220039 @default.
- W3043160233 cites W2050305668 @default.
- W3043160233 cites W2060748802 @default.
- W3043160233 cites W2070087434 @default.
- W3043160233 cites W2070744121 @default.
- W3043160233 cites W2077553235 @default.
- W3043160233 cites W2092552911 @default.
- W3043160233 cites W2117504520 @default.
- W3043160233 cites W2127791390 @default.
- W3043160233 cites W2137725598 @default.
- W3043160233 cites W2214210022 @default.
- W3043160233 cites W2465968023 @default.
- W3043160233 cites W2566210173 @default.
- W3043160233 cites W2604547316 @default.
- W3043160233 cites W2604979947 @default.
- W3043160233 cites W2605894184 @default.
- W3043160233 cites W2725153442 @default.
- W3043160233 cites W2741170098 @default.
- W3043160233 cites W2753359019 @default.
- W3043160233 cites W2760845824 @default.
- W3043160233 cites W2768661635 @default.
- W3043160233 cites W2780157115 @default.
- W3043160233 cites W2780548293 @default.
- W3043160233 cites W2781642515 @default.
- W3043160233 cites W2782272692 @default.
- W3043160233 cites W2790109047 @default.
- W3043160233 cites W2791315675 @default.
- W3043160233 cites W2794137295 @default.
- W3043160233 cites W2801822775 @default.
- W3043160233 cites W2805257321 @default.
- W3043160233 cites W2810153117 @default.
- W3043160233 cites W2906194720 @default.
- W3043160233 cites W3015047224 @default.
- W3043160233 doi "https://doi.org/10.1016/j.asoc.2020.106552" @default.
- W3043160233 hasPublicationYear "2020" @default.
- W3043160233 type Work @default.
- W3043160233 sameAs 3043160233 @default.
- W3043160233 citedByCount "81" @default.
- W3043160233 countsByYear W30431602332020 @default.
- W3043160233 countsByYear W30431602332021 @default.
- W3043160233 countsByYear W30431602332022 @default.
- W3043160233 countsByYear W30431602332023 @default.
- W3043160233 crossrefType "journal-article" @default.
- W3043160233 hasAuthorship W3043160233A5024510510 @default.
- W3043160233 hasAuthorship W3043160233A5034541188 @default.
- W3043160233 hasAuthorship W3043160233A5038410374 @default.
- W3043160233 hasConcept C119857082 @default.
- W3043160233 hasConcept C154945302 @default.
- W3043160233 hasConcept C159985019 @default.
- W3043160233 hasConcept C192562407 @default.
- W3043160233 hasConcept C30407753 @default.
- W3043160233 hasConcept C41008148 @default.
- W3043160233 hasConceptScore W3043160233C119857082 @default.
- W3043160233 hasConceptScore W3043160233C154945302 @default.
- W3043160233 hasConceptScore W3043160233C159985019 @default.
- W3043160233 hasConceptScore W3043160233C192562407 @default.
- W3043160233 hasConceptScore W3043160233C30407753 @default.
- W3043160233 hasConceptScore W3043160233C41008148 @default.
- W3043160233 hasLocation W30431602331 @default.
- W3043160233 hasOpenAccess W3043160233 @default.
- W3043160233 hasPrimaryLocation W30431602331 @default.
- W3043160233 hasRelatedWork W1994103032 @default.
- W3043160233 hasRelatedWork W2011052271 @default.
- W3043160233 hasRelatedWork W2014315543 @default.
- W3043160233 hasRelatedWork W2051270029 @default.
- W3043160233 hasRelatedWork W2082293200 @default.
- W3043160233 hasRelatedWork W2380293314 @default.
- W3043160233 hasRelatedWork W2886057184 @default.
- W3043160233 hasRelatedWork W2899084033 @default.
- W3043160233 hasRelatedWork W2943188944 @default.
- W3043160233 hasRelatedWork W4285802202 @default.
- W3043160233 hasVolume "95" @default.
- W3043160233 isParatext "false" @default.
- W3043160233 isRetracted "false" @default.
- W3043160233 magId "3043160233" @default.
- W3043160233 workType "article" @default.