Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043274284> ?p ?o ?g. }
- W3043274284 endingPage "404" @default.
- W3043274284 startingPage "392" @default.
- W3043274284 abstract "Abstract Environmental health studies relate how exposures (eg, chemicals) affect human health and disease; however, in most cases, the molecular and biological mechanisms connecting an exposure with a disease remain unknown. To help fill in these knowledge gaps, we sought to leverage content from the public Comparative Toxicogenomics Database (CTD) to identify potential intermediary steps. In a proof-of-concept study, we systematically compute the genes, molecular mechanisms, and biological events for the environmental health association linking air pollution toxicants with 2 cardiovascular diseases (myocardial infarction and hypertension) as a test case. Our approach integrates 5 types of curated interactions in CTD to build sets of “CGPD-tetramers,” computationally constructed information blocks relating a Chemical- Gene interaction with a Phenotype and Disease. This bioinformatics strategy generates 653 CGPD-tetramers for air pollution-associated myocardial infarction (involving 5 pollutants, 58 genes, and 117 phenotypes) and 701 CGPD-tetramers for air pollution-associated hypertension (involving 3 pollutants, 96 genes, and 142 phenotypes). Collectively, we identify 19 genes and 96 phenotypes shared between these 2 air pollutant-induced outcomes, and suggest important roles for oxidative stress, inflammation, immune responses, cell death, and circulatory system processes. Moreover, CGPD-tetramers can be assembled into extensive chemical-induced disease pathways involving multiple gene products and sequential biological events, and many of these computed intermediary steps are validated in the literature. Our method does not require a priori knowledge of the toxicant, interacting gene, or biological system, and can be used to analyze any environmental chemical-induced disease curated within the public CTD framework. This bioinformatics strategy links and interrelates chemicals, genes, phenotypes, and diseases to fill in knowledge gaps for environmental health studies, as demonstrated for air pollution-associated cardiovascular disease, but can be adapted by researchers for any environmentally influenced disease-of-interest." @default.
- W3043274284 created "2020-07-23" @default.
- W3043274284 creator A5013500904 @default.
- W3043274284 creator A5020256098 @default.
- W3043274284 creator A5020910675 @default.
- W3043274284 creator A5063325560 @default.
- W3043274284 creator A5064334598 @default.
- W3043274284 creator A5064913451 @default.
- W3043274284 creator A5076813284 @default.
- W3043274284 date "2020-07-14" @default.
- W3043274284 modified "2023-10-15" @default.
- W3043274284 title "Leveraging the Comparative Toxicogenomics Database to Fill in Knowledge Gaps for Environmental Health: A Test Case for Air Pollution-induced Cardiovascular Disease" @default.
- W3043274284 cites W1987063389 @default.
- W3043274284 cites W1998767819 @default.
- W3043274284 cites W1999938234 @default.
- W3043274284 cites W2019789379 @default.
- W3043274284 cites W2027398403 @default.
- W3043274284 cites W2029456383 @default.
- W3043274284 cites W2052250375 @default.
- W3043274284 cites W2057837172 @default.
- W3043274284 cites W2071021089 @default.
- W3043274284 cites W2073092560 @default.
- W3043274284 cites W2078229682 @default.
- W3043274284 cites W2103017472 @default.
- W3043274284 cites W2108263677 @default.
- W3043274284 cites W2131858211 @default.
- W3043274284 cites W2137937634 @default.
- W3043274284 cites W2141390557 @default.
- W3043274284 cites W2141970008 @default.
- W3043274284 cites W2143358459 @default.
- W3043274284 cites W2158743996 @default.
- W3043274284 cites W2194873522 @default.
- W3043274284 cites W2262231818 @default.
- W3043274284 cites W2274540769 @default.
- W3043274284 cites W2318698569 @default.
- W3043274284 cites W2325652754 @default.
- W3043274284 cites W2337659964 @default.
- W3043274284 cites W2357288019 @default.
- W3043274284 cites W2374508027 @default.
- W3043274284 cites W2491458479 @default.
- W3043274284 cites W2513644890 @default.
- W3043274284 cites W2596431352 @default.
- W3043274284 cites W2606185175 @default.
- W3043274284 cites W2607350314 @default.
- W3043274284 cites W2725822996 @default.
- W3043274284 cites W2736092386 @default.
- W3043274284 cites W2739223225 @default.
- W3043274284 cites W2746076400 @default.
- W3043274284 cites W2765237212 @default.
- W3043274284 cites W2769753999 @default.
- W3043274284 cites W2781683047 @default.
- W3043274284 cites W2783117893 @default.
- W3043274284 cites W2788021808 @default.
- W3043274284 cites W2790615310 @default.
- W3043274284 cites W2792445736 @default.
- W3043274284 cites W2806502219 @default.
- W3043274284 cites W2810027988 @default.
- W3043274284 cites W2898149752 @default.
- W3043274284 cites W2916047525 @default.
- W3043274284 cites W2917858269 @default.
- W3043274284 cites W2922014097 @default.
- W3043274284 cites W2932272396 @default.
- W3043274284 cites W2935802524 @default.
- W3043274284 cites W2937547895 @default.
- W3043274284 cites W2955809412 @default.
- W3043274284 cites W2966192879 @default.
- W3043274284 cites W2968181193 @default.
- W3043274284 cites W2973232653 @default.
- W3043274284 cites W2980355238 @default.
- W3043274284 cites W3000378805 @default.
- W3043274284 cites W3010715547 @default.
- W3043274284 cites W3025815929 @default.
- W3043274284 cites W4233698560 @default.
- W3043274284 doi "https://doi.org/10.1093/toxsci/kfaa113" @default.
- W3043274284 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7548289" @default.
- W3043274284 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32663284" @default.
- W3043274284 hasPublicationYear "2020" @default.
- W3043274284 type Work @default.
- W3043274284 sameAs 3043274284 @default.
- W3043274284 citedByCount "19" @default.
- W3043274284 countsByYear W30432742842020 @default.
- W3043274284 countsByYear W30432742842021 @default.
- W3043274284 countsByYear W30432742842022 @default.
- W3043274284 countsByYear W30432742842023 @default.
- W3043274284 crossrefType "journal-article" @default.
- W3043274284 hasAuthorship W3043274284A5013500904 @default.
- W3043274284 hasAuthorship W3043274284A5020256098 @default.
- W3043274284 hasAuthorship W3043274284A5020910675 @default.
- W3043274284 hasAuthorship W3043274284A5063325560 @default.
- W3043274284 hasAuthorship W3043274284A5064334598 @default.
- W3043274284 hasAuthorship W3043274284A5064913451 @default.
- W3043274284 hasAuthorship W3043274284A5076813284 @default.
- W3043274284 hasBestOaLocation W30432742841 @default.
- W3043274284 hasConcept C104317684 @default.
- W3043274284 hasConcept C127716648 @default.
- W3043274284 hasConcept C142724271 @default.
- W3043274284 hasConcept C150194340 @default.
- W3043274284 hasConcept C2779134260 @default.