Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043284621> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3043284621 endingPage "184" @default.
- W3043284621 startingPage "177" @default.
- W3043284621 abstract "The application of millimeter-wave (mmWave) frequencies is a potential technology for satisfying the continuously increasing need for handling data traffic in highly advanced wireless communications. A substantial challenge presented in mmWave communications is the high path loss. mmWave systems adopt beamforming techniques to overcome this issue. These require robust channel estimation and tracking algorithm for maintenance of an adequate quality of service. In this study, we propose a deep learning-based channel estimation and tracking algorithm for vehicular mmWave communications. More specifically, a deep neural network is leveraged to learn the mapping function between the received omni-beam patterns and mmWave channel with negligible overhead. Following the channel estimation, long short-term memory is leveraged to track the channel. The simulation results demonstrate that the proposed algorithm estimates and tracks the mmWave channel efficiently with negligible training overhead." @default.
- W3043284621 created "2020-07-23" @default.
- W3043284621 creator A5045884042 @default.
- W3043284621 creator A5051722379 @default.
- W3043284621 creator A5008248718 @default.
- W3043284621 date "2020-06-01" @default.
- W3043284621 modified "2023-10-12" @default.
- W3043284621 title "Deep learning-based channel estimation and tracking for millimeter-wave vehicular communications" @default.
- W3043284621 cites W1499798684 @default.
- W3043284621 cites W1589901016 @default.
- W3043284621 cites W2040621389 @default.
- W3043284621 cites W2053521124 @default.
- W3043284621 cites W2064675550 @default.
- W3043284621 cites W2075148031 @default.
- W3043284621 cites W2076063813 @default.
- W3043284621 cites W2131774270 @default.
- W3043284621 cites W2135517533 @default.
- W3043284621 cites W2161631773 @default.
- W3043284621 cites W2166486216 @default.
- W3043284621 cites W2168625863 @default.
- W3043284621 cites W2195693430 @default.
- W3043284621 cites W2525778437 @default.
- W3043284621 cites W2528345145 @default.
- W3043284621 cites W2533910686 @default.
- W3043284621 cites W2607447150 @default.
- W3043284621 cites W2615358882 @default.
- W3043284621 cites W2810871807 @default.
- W3043284621 cites W2914949576 @default.
- W3043284621 cites W2956797962 @default.
- W3043284621 cites W2963099529 @default.
- W3043284621 cites W2963145597 @default.
- W3043284621 cites W2963190722 @default.
- W3043284621 cites W3011676575 @default.
- W3043284621 cites W3040897111 @default.
- W3043284621 cites W3103926693 @default.
- W3043284621 cites W3023071679 @default.
- W3043284621 doi "https://doi.org/10.1109/jcn.2020.000012" @default.
- W3043284621 hasPublicationYear "2020" @default.
- W3043284621 type Work @default.
- W3043284621 sameAs 3043284621 @default.
- W3043284621 citedByCount "39" @default.
- W3043284621 countsByYear W30432846212021 @default.
- W3043284621 countsByYear W30432846212022 @default.
- W3043284621 countsByYear W30432846212023 @default.
- W3043284621 crossrefType "journal-article" @default.
- W3043284621 hasAuthorship W3043284621A5008248718 @default.
- W3043284621 hasAuthorship W3043284621A5045884042 @default.
- W3043284621 hasAuthorship W3043284621A5051722379 @default.
- W3043284621 hasBestOaLocation W30432846211 @default.
- W3043284621 hasConcept C111919701 @default.
- W3043284621 hasConcept C127162648 @default.
- W3043284621 hasConcept C194273485 @default.
- W3043284621 hasConcept C2779960059 @default.
- W3043284621 hasConcept C31258907 @default.
- W3043284621 hasConcept C41008148 @default.
- W3043284621 hasConcept C45764600 @default.
- W3043284621 hasConcept C54197355 @default.
- W3043284621 hasConcept C555944384 @default.
- W3043284621 hasConcept C76155785 @default.
- W3043284621 hasConcept C79403827 @default.
- W3043284621 hasConceptScore W3043284621C111919701 @default.
- W3043284621 hasConceptScore W3043284621C127162648 @default.
- W3043284621 hasConceptScore W3043284621C194273485 @default.
- W3043284621 hasConceptScore W3043284621C2779960059 @default.
- W3043284621 hasConceptScore W3043284621C31258907 @default.
- W3043284621 hasConceptScore W3043284621C41008148 @default.
- W3043284621 hasConceptScore W3043284621C45764600 @default.
- W3043284621 hasConceptScore W3043284621C54197355 @default.
- W3043284621 hasConceptScore W3043284621C555944384 @default.
- W3043284621 hasConceptScore W3043284621C76155785 @default.
- W3043284621 hasConceptScore W3043284621C79403827 @default.
- W3043284621 hasIssue "3" @default.
- W3043284621 hasLocation W30432846211 @default.
- W3043284621 hasOpenAccess W3043284621 @default.
- W3043284621 hasPrimaryLocation W30432846211 @default.
- W3043284621 hasRelatedWork W2504274537 @default.
- W3043284621 hasRelatedWork W2512234407 @default.
- W3043284621 hasRelatedWork W2521006054 @default.
- W3043284621 hasRelatedWork W2904745702 @default.
- W3043284621 hasRelatedWork W2972536919 @default.
- W3043284621 hasRelatedWork W3110590130 @default.
- W3043284621 hasRelatedWork W3203000479 @default.
- W3043284621 hasRelatedWork W4287562279 @default.
- W3043284621 hasRelatedWork W4386214573 @default.
- W3043284621 hasRelatedWork W905396345 @default.
- W3043284621 hasVolume "22" @default.
- W3043284621 isParatext "false" @default.
- W3043284621 isRetracted "false" @default.
- W3043284621 magId "3043284621" @default.
- W3043284621 workType "article" @default.