Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043289101> ?p ?o ?g. }
- W3043289101 endingPage "336" @default.
- W3043289101 startingPage "327" @default.
- W3043289101 abstract "Principal component analysis (PCA) has been widely applied in chemometrics and process monitoring. Because the principal component (PC) is a combination of all original variables, its interpretation is often not straightforward. Recently, sparse PCA methods have been developed to generate sparse loading vectors. The obtained sparse principal component (SPC) is much easier to interpret. However, the sparser loading vectors and the lower variance are achieved by SPCs. The sparsity-variance trade-off is usually represented by the index of sparseness which is determined by the number of non-zero loadings on each SPC. In this paper, we propose a novel method for the selection of NNZL using particle swarm optimization (PSO) for sparse PCA. The proposed method is applied to process monitoring. Two case studies are used to verify the capability and efficiency of the proposed method." @default.
- W3043289101 created "2020-07-23" @default.
- W3043289101 creator A5005959966 @default.
- W3043289101 creator A5010647753 @default.
- W3043289101 creator A5014286361 @default.
- W3043289101 creator A5028592683 @default.
- W3043289101 creator A5031316012 @default.
- W3043289101 creator A5055169683 @default.
- W3043289101 date "2020-07-20" @default.
- W3043289101 modified "2023-09-23" @default.
- W3043289101 title "Sparse Principal Component Analysis Using Particle Swarm Optimization" @default.
- W3043289101 cites W1578249005 @default.
- W3043289101 cites W1786686177 @default.
- W3043289101 cites W1925428099 @default.
- W3043289101 cites W1975900269 @default.
- W3043289101 cites W1978483425 @default.
- W3043289101 cites W1979817396 @default.
- W3043289101 cites W1992633833 @default.
- W3043289101 cites W1998409929 @default.
- W3043289101 cites W2004186751 @default.
- W3043289101 cites W2014441923 @default.
- W3043289101 cites W2031165514 @default.
- W3043289101 cites W2034400748 @default.
- W3043289101 cites W2044809283 @default.
- W3043289101 cites W2062087312 @default.
- W3043289101 cites W2076769400 @default.
- W3043289101 cites W2089468765 @default.
- W3043289101 cites W2098290597 @default.
- W3043289101 cites W2113600901 @default.
- W3043289101 cites W2295124130 @default.
- W3043289101 cites W2320438893 @default.
- W3043289101 cites W2583782247 @default.
- W3043289101 cites W2615253071 @default.
- W3043289101 cites W2734575787 @default.
- W3043289101 cites W2757109865 @default.
- W3043289101 cites W2763148304 @default.
- W3043289101 cites W2772808240 @default.
- W3043289101 cites W2796986051 @default.
- W3043289101 cites W2806122632 @default.
- W3043289101 cites W2889017122 @default.
- W3043289101 cites W4250133920 @default.
- W3043289101 doi "https://doi.org/10.1252/jcej.20we006" @default.
- W3043289101 hasPublicationYear "2020" @default.
- W3043289101 type Work @default.
- W3043289101 sameAs 3043289101 @default.
- W3043289101 citedByCount "2" @default.
- W3043289101 countsByYear W30432891012021 @default.
- W3043289101 countsByYear W30432891012022 @default.
- W3043289101 crossrefType "journal-article" @default.
- W3043289101 hasAuthorship W3043289101A5005959966 @default.
- W3043289101 hasAuthorship W3043289101A5010647753 @default.
- W3043289101 hasAuthorship W3043289101A5014286361 @default.
- W3043289101 hasAuthorship W3043289101A5028592683 @default.
- W3043289101 hasAuthorship W3043289101A5031316012 @default.
- W3043289101 hasAuthorship W3043289101A5055169683 @default.
- W3043289101 hasConcept C111919701 @default.
- W3043289101 hasConcept C11413529 @default.
- W3043289101 hasConcept C119857082 @default.
- W3043289101 hasConcept C121332964 @default.
- W3043289101 hasConcept C121955636 @default.
- W3043289101 hasConcept C124066611 @default.
- W3043289101 hasConcept C144133560 @default.
- W3043289101 hasConcept C151304367 @default.
- W3043289101 hasConcept C153180895 @default.
- W3043289101 hasConcept C154945302 @default.
- W3043289101 hasConcept C168167062 @default.
- W3043289101 hasConcept C186060115 @default.
- W3043289101 hasConcept C196083921 @default.
- W3043289101 hasConcept C24252448 @default.
- W3043289101 hasConcept C27438332 @default.
- W3043289101 hasConcept C33923547 @default.
- W3043289101 hasConcept C41008148 @default.
- W3043289101 hasConcept C85617194 @default.
- W3043289101 hasConcept C86803240 @default.
- W3043289101 hasConcept C97355855 @default.
- W3043289101 hasConcept C98045186 @default.
- W3043289101 hasConceptScore W3043289101C111919701 @default.
- W3043289101 hasConceptScore W3043289101C11413529 @default.
- W3043289101 hasConceptScore W3043289101C119857082 @default.
- W3043289101 hasConceptScore W3043289101C121332964 @default.
- W3043289101 hasConceptScore W3043289101C121955636 @default.
- W3043289101 hasConceptScore W3043289101C124066611 @default.
- W3043289101 hasConceptScore W3043289101C144133560 @default.
- W3043289101 hasConceptScore W3043289101C151304367 @default.
- W3043289101 hasConceptScore W3043289101C153180895 @default.
- W3043289101 hasConceptScore W3043289101C154945302 @default.
- W3043289101 hasConceptScore W3043289101C168167062 @default.
- W3043289101 hasConceptScore W3043289101C186060115 @default.
- W3043289101 hasConceptScore W3043289101C196083921 @default.
- W3043289101 hasConceptScore W3043289101C24252448 @default.
- W3043289101 hasConceptScore W3043289101C27438332 @default.
- W3043289101 hasConceptScore W3043289101C33923547 @default.
- W3043289101 hasConceptScore W3043289101C41008148 @default.
- W3043289101 hasConceptScore W3043289101C85617194 @default.
- W3043289101 hasConceptScore W3043289101C86803240 @default.
- W3043289101 hasConceptScore W3043289101C97355855 @default.
- W3043289101 hasConceptScore W3043289101C98045186 @default.
- W3043289101 hasIssue "7" @default.