Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043290180> ?p ?o ?g. }
- W3043290180 endingPage "104153" @default.
- W3043290180 startingPage "104153" @default.
- W3043290180 abstract "An artificial neural network (ANN) model was developed to predict tensile and impact properties of a submerged arc helical welded (SAHW) pipeline steel API X70 based upon its chemical composition. Weight percent of the elements was considered as the input, while the tensile and Charpy impact properties were considered as the outputs. Scatter diagrams and two statistical parameters (absolute fraction of variance and relative error) were used to evaluate the prediction performance of the developed artificial neural network model. The predicted values were found to be in excellent agreement with the experimental data and the current model has a good learning precision and generalization (for training, validation and testing data sets). The results revealed that the developed model is very accurate and has a strong potential for capturing the interaction between the mechanical properties and chemical composition of welded high strength low alloy (HSLA) steels." @default.
- W3043290180 created "2020-07-23" @default.
- W3043290180 creator A5005917777 @default.
- W3043290180 creator A5020674744 @default.
- W3043290180 creator A5021855938 @default.
- W3043290180 creator A5035069844 @default.
- W3043290180 creator A5042043369 @default.
- W3043290180 creator A5050321766 @default.
- W3043290180 creator A5062206110 @default.
- W3043290180 creator A5067789347 @default.
- W3043290180 creator A5073482203 @default.
- W3043290180 creator A5089983190 @default.
- W3043290180 date "2020-09-01" @default.
- W3043290180 modified "2023-10-07" @default.
- W3043290180 title "Prediction of mechanical properties of welded steel X70 pipeline using neural network modelling" @default.
- W3043290180 cites W1902048957 @default.
- W3043290180 cites W1966254617 @default.
- W3043290180 cites W1971276009 @default.
- W3043290180 cites W1984451319 @default.
- W3043290180 cites W1989178370 @default.
- W3043290180 cites W1992841258 @default.
- W3043290180 cites W1995777919 @default.
- W3043290180 cites W1997841687 @default.
- W3043290180 cites W2007632327 @default.
- W3043290180 cites W2014139507 @default.
- W3043290180 cites W2032347070 @default.
- W3043290180 cites W2039640556 @default.
- W3043290180 cites W2056579834 @default.
- W3043290180 cites W2060890532 @default.
- W3043290180 cites W2062402278 @default.
- W3043290180 cites W2068918763 @default.
- W3043290180 cites W2084552293 @default.
- W3043290180 cites W2088567491 @default.
- W3043290180 cites W2103384823 @default.
- W3043290180 cites W2118168680 @default.
- W3043290180 cites W2171927803 @default.
- W3043290180 cites W2211669586 @default.
- W3043290180 cites W2239292259 @default.
- W3043290180 cites W2383759109 @default.
- W3043290180 cites W2395404705 @default.
- W3043290180 cites W2473487512 @default.
- W3043290180 cites W2484070363 @default.
- W3043290180 cites W2562901153 @default.
- W3043290180 cites W2605774387 @default.
- W3043290180 cites W2613436601 @default.
- W3043290180 cites W2789315330 @default.
- W3043290180 cites W2790112330 @default.
- W3043290180 cites W2791850582 @default.
- W3043290180 cites W2795358912 @default.
- W3043290180 cites W2799438294 @default.
- W3043290180 cites W2809115986 @default.
- W3043290180 cites W2911879165 @default.
- W3043290180 cites W2915288834 @default.
- W3043290180 cites W4252414887 @default.
- W3043290180 doi "https://doi.org/10.1016/j.ijpvp.2020.104153" @default.
- W3043290180 hasPublicationYear "2020" @default.
- W3043290180 type Work @default.
- W3043290180 sameAs 3043290180 @default.
- W3043290180 citedByCount "14" @default.
- W3043290180 countsByYear W30432901802021 @default.
- W3043290180 countsByYear W30432901802022 @default.
- W3043290180 countsByYear W30432901802023 @default.
- W3043290180 crossrefType "journal-article" @default.
- W3043290180 hasAuthorship W3043290180A5005917777 @default.
- W3043290180 hasAuthorship W3043290180A5020674744 @default.
- W3043290180 hasAuthorship W3043290180A5021855938 @default.
- W3043290180 hasAuthorship W3043290180A5035069844 @default.
- W3043290180 hasAuthorship W3043290180A5042043369 @default.
- W3043290180 hasAuthorship W3043290180A5050321766 @default.
- W3043290180 hasAuthorship W3043290180A5062206110 @default.
- W3043290180 hasAuthorship W3043290180A5067789347 @default.
- W3043290180 hasAuthorship W3043290180A5073482203 @default.
- W3043290180 hasAuthorship W3043290180A5089983190 @default.
- W3043290180 hasConcept C112950240 @default.
- W3043290180 hasConcept C11413529 @default.
- W3043290180 hasConcept C115903868 @default.
- W3043290180 hasConcept C122383733 @default.
- W3043290180 hasConcept C127205250 @default.
- W3043290180 hasConcept C127413603 @default.
- W3043290180 hasConcept C154945302 @default.
- W3043290180 hasConcept C16910744 @default.
- W3043290180 hasConcept C191897082 @default.
- W3043290180 hasConcept C192562407 @default.
- W3043290180 hasConcept C19474535 @default.
- W3043290180 hasConcept C41008148 @default.
- W3043290180 hasConcept C43521106 @default.
- W3043290180 hasConcept C50644808 @default.
- W3043290180 hasConcept C66938386 @default.
- W3043290180 hasConcept C78519656 @default.
- W3043290180 hasConceptScore W3043290180C112950240 @default.
- W3043290180 hasConceptScore W3043290180C11413529 @default.
- W3043290180 hasConceptScore W3043290180C115903868 @default.
- W3043290180 hasConceptScore W3043290180C122383733 @default.
- W3043290180 hasConceptScore W3043290180C127205250 @default.
- W3043290180 hasConceptScore W3043290180C127413603 @default.
- W3043290180 hasConceptScore W3043290180C154945302 @default.
- W3043290180 hasConceptScore W3043290180C16910744 @default.
- W3043290180 hasConceptScore W3043290180C191897082 @default.