Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043293280> ?p ?o ?g. }
- W3043293280 endingPage "131948" @default.
- W3043293280 startingPage "131939" @default.
- W3043293280 abstract "Cancer is a leading killer disease globally, it occurs when the cellular changes cause the abnormal growth and division of the cells. Conventional treatment such as therapies and wet experimental methods are deemed unsatisfactory and worthless because of its huge cost and laborious nature. However, the recent innovation of anticancer peptides (ACPs) offers an effective way to treat cancer affected cells. Due to the rapid growth of biological sequences, truly identification of ACPs has become a difficult task for scientists. Therefore, measuring the importance of ACPs, an efficient and reliable intelligent model is highly essential to accurately identify its pattern. In this study, three distinct nature encoding schemes are employed to obtain features from peptide sequences. However, K-space amino acid pair (KSAAP) is used to extract highly correlated and effective descriptors. Apart from the sequential features, composite physiochemical properties are applied to gather local structure descriptors. Furthermore, to represent the intrinsic residue information of amino acids, autocovariance is also used. Additionally, a novel two-level feature selection (2LFS) method is utilized to select high discriminative features and to minimize the dimensionality of the proposed descriptors. At last, to examine the performance of the proposed model, several learning hypotheses are investigated to select a superior operational engine. To measure the generalization capability, two diverse benchmark datasets are used. After evaluating the empirical outcomes, KSAAP using 2LFS reported high classification results on both datasets. Whereas, the classification outcomes reveal that our proposed cACP-2LFS achieved ~11% improved performance accuracy than present models in the literature so far. It is expected that our proposed model might be useful in the area of medicine, proteomics, and research academia. The source code and all datasets are publicly available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/shahidawkum/cACP-2LFS</uri> ." @default.
- W3043293280 created "2020-07-23" @default.
- W3043293280 creator A5000063908 @default.
- W3043293280 creator A5003063566 @default.
- W3043293280 creator A5031342322 @default.
- W3043293280 creator A5037634953 @default.
- W3043293280 date "2020-01-01" @default.
- W3043293280 modified "2023-10-02" @default.
- W3043293280 title "cACP-2LFS: Classification of Anticancer Peptides Using Sequential Discriminative Model of KSAAP and Two-Level Feature Selection Approach" @default.
- W3043293280 cites W1556218031 @default.
- W3043293280 cites W1575275310 @default.
- W3043293280 cites W1918744929 @default.
- W3043293280 cites W1969956377 @default.
- W3043293280 cites W1972848687 @default.
- W3043293280 cites W1981989535 @default.
- W3043293280 cites W1995757481 @default.
- W3043293280 cites W2001852593 @default.
- W3043293280 cites W2010818132 @default.
- W3043293280 cites W2010979687 @default.
- W3043293280 cites W2026650804 @default.
- W3043293280 cites W2052953199 @default.
- W3043293280 cites W2074196504 @default.
- W3043293280 cites W2077285561 @default.
- W3043293280 cites W2099153308 @default.
- W3043293280 cites W2102367710 @default.
- W3043293280 cites W2106787323 @default.
- W3043293280 cites W2112099873 @default.
- W3043293280 cites W2114024619 @default.
- W3043293280 cites W2118911320 @default.
- W3043293280 cites W2125224183 @default.
- W3043293280 cites W2137565410 @default.
- W3043293280 cites W2139709150 @default.
- W3043293280 cites W2141259072 @default.
- W3043293280 cites W2152705149 @default.
- W3043293280 cites W2153099927 @default.
- W3043293280 cites W2153491803 @default.
- W3043293280 cites W2153635508 @default.
- W3043293280 cites W2154053567 @default.
- W3043293280 cites W2163957306 @default.
- W3043293280 cites W2175270296 @default.
- W3043293280 cites W2286183458 @default.
- W3043293280 cites W2292706259 @default.
- W3043293280 cites W2315269201 @default.
- W3043293280 cites W2321308395 @default.
- W3043293280 cites W2340970647 @default.
- W3043293280 cites W2508741470 @default.
- W3043293280 cites W2521029800 @default.
- W3043293280 cites W2527519129 @default.
- W3043293280 cites W2557383173 @default.
- W3043293280 cites W2560732228 @default.
- W3043293280 cites W2599457435 @default.
- W3043293280 cites W2625609557 @default.
- W3043293280 cites W2736251917 @default.
- W3043293280 cites W2744385871 @default.
- W3043293280 cites W2747758005 @default.
- W3043293280 cites W2793278326 @default.
- W3043293280 cites W2800333284 @default.
- W3043293280 cites W2806146459 @default.
- W3043293280 cites W2842285517 @default.
- W3043293280 cites W2884524796 @default.
- W3043293280 cites W2885558658 @default.
- W3043293280 cites W2888317147 @default.
- W3043293280 cites W2888408766 @default.
- W3043293280 cites W2889646458 @default.
- W3043293280 cites W2891164245 @default.
- W3043293280 cites W2901754076 @default.
- W3043293280 cites W2911964244 @default.
- W3043293280 cites W2919709896 @default.
- W3043293280 cites W2943935116 @default.
- W3043293280 cites W2945375732 @default.
- W3043293280 cites W2946492269 @default.
- W3043293280 cites W2954633061 @default.
- W3043293280 cites W2970541594 @default.
- W3043293280 cites W2987660980 @default.
- W3043293280 cites W2994622524 @default.
- W3043293280 cites W3018950940 @default.
- W3043293280 cites W2593930842 @default.
- W3043293280 doi "https://doi.org/10.1109/access.2020.3009125" @default.
- W3043293280 hasPublicationYear "2020" @default.
- W3043293280 type Work @default.
- W3043293280 sameAs 3043293280 @default.
- W3043293280 citedByCount "21" @default.
- W3043293280 countsByYear W30432932802021 @default.
- W3043293280 countsByYear W30432932802022 @default.
- W3043293280 countsByYear W30432932802023 @default.
- W3043293280 crossrefType "journal-article" @default.
- W3043293280 hasAuthorship W3043293280A5000063908 @default.
- W3043293280 hasAuthorship W3043293280A5003063566 @default.
- W3043293280 hasAuthorship W3043293280A5031342322 @default.
- W3043293280 hasAuthorship W3043293280A5037634953 @default.
- W3043293280 hasBestOaLocation W30432932801 @default.
- W3043293280 hasConcept C119857082 @default.
- W3043293280 hasConcept C124101348 @default.
- W3043293280 hasConcept C13280743 @default.
- W3043293280 hasConcept C134306372 @default.
- W3043293280 hasConcept C138885662 @default.
- W3043293280 hasConcept C148483581 @default.
- W3043293280 hasConcept C153180895 @default.