Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043305460> ?p ?o ?g. }
- W3043305460 endingPage "1862" @default.
- W3043305460 startingPage "1846" @default.
- W3043305460 abstract "Abstract The growing number of densely populated cities has resulted in a decrease in vegetation coverage, which in turn, has resulted in a temperature increase in urban areas. This phenomenon is known as urban heat island (UHI). Several strategies have been proposed to mitigate the effect of urban heat islands in recent years, including usage of green roof coverage. However, there is a need for a rigorous analysis of the relationship between UHI and different urban characteristics using advanced models for urban planners to make policy-decisions to mitigate the UHI effect. In this study, the cooling effect of the green roof strategy in the city of Austin, considering 2D/3D urban characteristic parameters was investigated. To begin with, land surface temperature (LST) was estimated from Landsat 8 TIRS data in July 2016. Also, 3D urban morphology parameters derived from light detection and ranging (LiDAR) data. To simulate the green roof strategy, Sentinel 2A satellite images were used to calculate the normalized difference vegetation index and the normalized difference built-up index because of higher spatial resolution than Landsat 8 OLI. Then a multilayer feed-forward neural network was applied as a nonlinear model to find a relationship between LST and various urban characteristic parameters simultaneously. Furthermore, the importance of the variables in LST modeling was evaluated using sensitivity analysis. After that, some downtown residential and office buildings, which had the potential to become a green roof, were selected to implement the green roof strategy. Finally, by analyzing the relationship between LST reduction due to green roof simulation and urban indicators, the best buildings for green roof implementation were determined. Results showed that the accuracy of the LST modeling was reached to R2 = 0.786 and RMSE = 0.956 °C. In addition, by greening 3.2% of total building roofs, the average of LST decreased by 1.96 °C. Moreover, the results indicated that the building green roofs with (i) heights of 15–25 m, (ii) the highest values of sky view factor and solar radiation, and (iii) the lowest distance to the water body, had the greatest cooling effects on LST. Consequently, these findings indicated that the green roof has a significant effect on temperature reduction, especially by selecting the buildings with the above mentioned characteristics." @default.
- W3043305460 created "2020-07-23" @default.
- W3043305460 creator A5002731443 @default.
- W3043305460 creator A5014637550 @default.
- W3043305460 creator A5034315631 @default.
- W3043305460 date "2020-10-01" @default.
- W3043305460 modified "2023-10-04" @default.
- W3043305460 title "Simulation of green roofs and their potential mitigating effects on the urban heat island using an artificial neural network: A case study in Austin, Texas" @default.
- W3043305460 cites W1881090692 @default.
- W3043305460 cites W1922792363 @default.
- W3043305460 cites W1949965070 @default.
- W3043305460 cites W1965241701 @default.
- W3043305460 cites W1970196905 @default.
- W3043305460 cites W1972695952 @default.
- W3043305460 cites W1975840289 @default.
- W3043305460 cites W1979015823 @default.
- W3043305460 cites W1995391746 @default.
- W3043305460 cites W1997245731 @default.
- W3043305460 cites W2001564322 @default.
- W3043305460 cites W2021191744 @default.
- W3043305460 cites W2021384056 @default.
- W3043305460 cites W2032007905 @default.
- W3043305460 cites W2035629501 @default.
- W3043305460 cites W2035951169 @default.
- W3043305460 cites W2036670520 @default.
- W3043305460 cites W2046970602 @default.
- W3043305460 cites W2056435747 @default.
- W3043305460 cites W2070582668 @default.
- W3043305460 cites W2081629992 @default.
- W3043305460 cites W2098229919 @default.
- W3043305460 cites W2102182928 @default.
- W3043305460 cites W2109665902 @default.
- W3043305460 cites W2123815069 @default.
- W3043305460 cites W2126943165 @default.
- W3043305460 cites W2142893550 @default.
- W3043305460 cites W2145087958 @default.
- W3043305460 cites W2156049446 @default.
- W3043305460 cites W2232753159 @default.
- W3043305460 cites W2278448846 @default.
- W3043305460 cites W2293430860 @default.
- W3043305460 cites W2483205780 @default.
- W3043305460 cites W2554470513 @default.
- W3043305460 cites W2560229585 @default.
- W3043305460 cites W2570830654 @default.
- W3043305460 cites W2584823719 @default.
- W3043305460 cites W2601995073 @default.
- W3043305460 cites W2603052706 @default.
- W3043305460 cites W2610866861 @default.
- W3043305460 cites W2611372059 @default.
- W3043305460 cites W2739854192 @default.
- W3043305460 cites W2760974709 @default.
- W3043305460 cites W2769297166 @default.
- W3043305460 cites W2770512447 @default.
- W3043305460 cites W2775288003 @default.
- W3043305460 cites W2776429828 @default.
- W3043305460 cites W2782535317 @default.
- W3043305460 cites W2790999748 @default.
- W3043305460 cites W2791026764 @default.
- W3043305460 cites W2793394881 @default.
- W3043305460 cites W2799417842 @default.
- W3043305460 cites W2800233510 @default.
- W3043305460 cites W2803234898 @default.
- W3043305460 cites W2807007945 @default.
- W3043305460 cites W2811288671 @default.
- W3043305460 cites W2811371839 @default.
- W3043305460 cites W2888997619 @default.
- W3043305460 cites W2890621173 @default.
- W3043305460 cites W2907634360 @default.
- W3043305460 cites W2911220736 @default.
- W3043305460 cites W2912636832 @default.
- W3043305460 cites W2941529264 @default.
- W3043305460 cites W2948143165 @default.
- W3043305460 cites W2965247913 @default.
- W3043305460 cites W2981900376 @default.
- W3043305460 cites W3002152647 @default.
- W3043305460 cites W3002165885 @default.
- W3043305460 cites W3004180350 @default.
- W3043305460 cites W3023751868 @default.
- W3043305460 cites W918712335 @default.
- W3043305460 doi "https://doi.org/10.1016/j.asr.2020.06.039" @default.
- W3043305460 hasPublicationYear "2020" @default.
- W3043305460 type Work @default.
- W3043305460 sameAs 3043305460 @default.
- W3043305460 citedByCount "27" @default.
- W3043305460 countsByYear W30433054602020 @default.
- W3043305460 countsByYear W30433054602021 @default.
- W3043305460 countsByYear W30433054602022 @default.
- W3043305460 countsByYear W30433054602023 @default.
- W3043305460 crossrefType "journal-article" @default.
- W3043305460 hasAuthorship W3043305460A5002731443 @default.
- W3043305460 hasAuthorship W3043305460A5014637550 @default.
- W3043305460 hasAuthorship W3043305460A5034315631 @default.
- W3043305460 hasConcept C153294291 @default.
- W3043305460 hasConcept C154945302 @default.
- W3043305460 hasConcept C205649164 @default.
- W3043305460 hasConcept C39432304 @default.
- W3043305460 hasConcept C41008148 @default.
- W3043305460 hasConcept C50644808 @default.