Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043310174> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3043310174 endingPage "646" @default.
- W3043310174 startingPage "637" @default.
- W3043310174 abstract "PURPOSE Shapley additive explanation (SHAP) values represent a unified approach to interpreting predictions made by complex machine learning (ML) models, with superior consistency and accuracy compared with prior methods. We describe a novel application of SHAP values to the prediction of mortality risk in prostate cancer. METHODS Patients with nonmetastatic, node-negative prostate cancer, diagnosed between 2004 and 2015, were identified using the National Cancer Database. Model features were specified a priori: age, prostate-specific antigen (PSA), Gleason score, percent positive cores (PPC), comorbidity score, and clinical T stage. We trained a gradient-boosted tree model and applied SHAP values to model predictions. Open-source libraries in Python 3.7 were used for all analyses. RESULTS We identified 372,808 patients meeting the inclusion criteria. When analyzing the interaction between PSA and Gleason score, we demonstrated consistency with the literature using the example of low-PSA, high-Gleason prostate cancer, recently identified as a unique entity with a poor prognosis. When analyzing the PPC-Gleason score interaction, we identified a novel finding of stronger interaction effects in patients with Gleason ≥ 8 disease compared with Gleason 6-7 disease, particularly with PPC ≥ 50%. Subsequent confirmatory linear analyses supported this finding: 5-year overall survival in Gleason ≥ 8 patients was 87.7% with PPC < 50% versus 77.2% with PPC ≥ 50% ( P < .001), compared with 89.1% versus 86.0% in Gleason 7 patients ( P < .001), with a significant interaction term between PPC ≥ 50% and Gleason ≥ 8 ( P < .001). CONCLUSION We describe a novel application of SHAP values for modeling and visualizing nonlinear interaction effects in prostate cancer. This ML-based approach is a promising technique with the potential to meaningfully improve risk stratification and staging systems." @default.
- W3043310174 created "2020-07-23" @default.
- W3043310174 creator A5009435876 @default.
- W3043310174 creator A5014867897 @default.
- W3043310174 creator A5028660468 @default.
- W3043310174 creator A5046103656 @default.
- W3043310174 creator A5065938090 @default.
- W3043310174 creator A5068203031 @default.
- W3043310174 creator A5068397348 @default.
- W3043310174 creator A5089084282 @default.
- W3043310174 date "2020-11-01" @default.
- W3043310174 modified "2023-10-17" @default.
- W3043310174 title "Machine Learning–Based Interpretation and Visualization of Nonlinear Interactions in Prostate Cancer Survival" @default.
- W3043310174 cites W2004079062 @default.
- W3043310174 cites W2039217762 @default.
- W3043310174 cites W2111547563 @default.
- W3043310174 cites W2136839015 @default.
- W3043310174 cites W2143062961 @default.
- W3043310174 cites W2161673710 @default.
- W3043310174 cites W2772104639 @default.
- W3043310174 cites W2788459110 @default.
- W3043310174 cites W2795418480 @default.
- W3043310174 cites W2892741787 @default.
- W3043310174 cites W2894585861 @default.
- W3043310174 cites W2899125947 @default.
- W3043310174 cites W2945976633 @default.
- W3043310174 doi "https://doi.org/10.1200/cci.20.00002" @default.
- W3043310174 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32673068" @default.
- W3043310174 hasPublicationYear "2020" @default.
- W3043310174 type Work @default.
- W3043310174 sameAs 3043310174 @default.
- W3043310174 citedByCount "41" @default.
- W3043310174 countsByYear W30433101742020 @default.
- W3043310174 countsByYear W30433101742021 @default.
- W3043310174 countsByYear W30433101742022 @default.
- W3043310174 countsByYear W30433101742023 @default.
- W3043310174 crossrefType "journal-article" @default.
- W3043310174 hasAuthorship W3043310174A5009435876 @default.
- W3043310174 hasAuthorship W3043310174A5014867897 @default.
- W3043310174 hasAuthorship W3043310174A5028660468 @default.
- W3043310174 hasAuthorship W3043310174A5046103656 @default.
- W3043310174 hasAuthorship W3043310174A5065938090 @default.
- W3043310174 hasAuthorship W3043310174A5068203031 @default.
- W3043310174 hasAuthorship W3043310174A5068397348 @default.
- W3043310174 hasAuthorship W3043310174A5089084282 @default.
- W3043310174 hasBestOaLocation W30433101741 @default.
- W3043310174 hasConcept C121608353 @default.
- W3043310174 hasConcept C126322002 @default.
- W3043310174 hasConcept C143998085 @default.
- W3043310174 hasConcept C2776235491 @default.
- W3043310174 hasConcept C2780192828 @default.
- W3043310174 hasConcept C2781406297 @default.
- W3043310174 hasConcept C71924100 @default.
- W3043310174 hasConceptScore W3043310174C121608353 @default.
- W3043310174 hasConceptScore W3043310174C126322002 @default.
- W3043310174 hasConceptScore W3043310174C143998085 @default.
- W3043310174 hasConceptScore W3043310174C2776235491 @default.
- W3043310174 hasConceptScore W3043310174C2780192828 @default.
- W3043310174 hasConceptScore W3043310174C2781406297 @default.
- W3043310174 hasConceptScore W3043310174C71924100 @default.
- W3043310174 hasIssue "4" @default.
- W3043310174 hasLocation W30433101741 @default.
- W3043310174 hasOpenAccess W3043310174 @default.
- W3043310174 hasPrimaryLocation W30433101741 @default.
- W3043310174 hasRelatedWork W2031954916 @default.
- W3043310174 hasRelatedWork W2075763133 @default.
- W3043310174 hasRelatedWork W2088520467 @default.
- W3043310174 hasRelatedWork W2376423713 @default.
- W3043310174 hasRelatedWork W2381163510 @default.
- W3043310174 hasRelatedWork W2384122898 @default.
- W3043310174 hasRelatedWork W3171449477 @default.
- W3043310174 hasRelatedWork W4252513521 @default.
- W3043310174 hasRelatedWork W1583600832 @default.
- W3043310174 hasRelatedWork W299695548 @default.
- W3043310174 isParatext "false" @default.
- W3043310174 isRetracted "false" @default.
- W3043310174 magId "3043310174" @default.
- W3043310174 workType "article" @default.