Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043338900> ?p ?o ?g. }
- W3043338900 endingPage "101452" @default.
- W3043338900 startingPage "101452" @default.
- W3043338900 abstract "Large bone defects due to trauma or disease present a significant clinical challenge with limited efficacy of current therapies. A key aim is to develop biomimetic scaffolds that reflect the native tissue structure with 3D printing being an important enabling technology. However, the incorporation of multiple length scales and anisotropic features, mimicking the native architecture, is difficult with current processes. In this study, we propose a simple and versatile hybrid printing process using a screw-assisted additive manufacturing technique combined with rotational electrospinning to fabricate dual-scale anisotropic scaffolds. 3D microscale porous polycaprolactone (PCL) structures with highly aligned nanoscale fibres were successfully produced layer-by-layer. The scaffolds were morphological, mechanical and biological characterised. Human adipose-derived stem cells (hADSCs) were seeded on the hybrid scaffold to evaluate the effects of structural and anisotropic topographic cues on cell attachment, proliferation and osteogenesis differentiation. Results show that the 3D printed microscale structures have uniform and well-defined geometries and the alignment of nanoscale electrospun fibres increases by increasing the electrospinning rotational velocity. Mechanical results show that there is no significant difference between 3D printed scaffolds with or without electrospun meshes. In vitro results show higher cell seeding efficiency and proliferation in dual-scale scaffolds with high density electrospun meshes. A more stretched and elongated cell morphology was observed in aligned nanofibre scaffolds showing higher anisotropic cytoskeletal organization than 3D printed PCL scaffolds without electrospun meshes. The dual-scale scaffolds present improved overall osteogenic markers expressions (COL-1, ALP and OCN). However, no statistical difference between normalised osteogenic marker expressions were observed between dual-scale scaffolds and 3D printed scaffolds. This might be attributed to the poor bioactivity of the substrate material, PCL, suggesting topographical cues might not be sufficient to stimulate cell fate towards to an osteogenic linage. The results suggest that the proposed fabrication strategy is a promising approach for the design of novel bone scaffolds to modulate cell fates by integrating the topographic cue reported in this paper with biochemical cues associated to the use of more bioactive materials." @default.
- W3043338900 created "2020-07-23" @default.
- W3043338900 creator A5001854608 @default.
- W3043338900 creator A5036297123 @default.
- W3043338900 creator A5039866784 @default.
- W3043338900 creator A5041696331 @default.
- W3043338900 creator A5045742158 @default.
- W3043338900 creator A5052622340 @default.
- W3043338900 creator A5067434985 @default.
- W3043338900 creator A5073216008 @default.
- W3043338900 date "2020-12-01" @default.
- W3043338900 modified "2023-10-14" @default.
- W3043338900 title "Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration" @default.
- W3043338900 cites W1140222300 @default.
- W3043338900 cites W1581347043 @default.
- W3043338900 cites W1965580978 @default.
- W3043338900 cites W1976500358 @default.
- W3043338900 cites W1981463089 @default.
- W3043338900 cites W1985125812 @default.
- W3043338900 cites W1991889593 @default.
- W3043338900 cites W1999735235 @default.
- W3043338900 cites W2020354964 @default.
- W3043338900 cites W2024788464 @default.
- W3043338900 cites W2027257620 @default.
- W3043338900 cites W2035317617 @default.
- W3043338900 cites W2036240459 @default.
- W3043338900 cites W2041842103 @default.
- W3043338900 cites W2046576188 @default.
- W3043338900 cites W2053760653 @default.
- W3043338900 cites W2079162389 @default.
- W3043338900 cites W2111195311 @default.
- W3043338900 cites W213050918 @default.
- W3043338900 cites W2158563642 @default.
- W3043338900 cites W2193745084 @default.
- W3043338900 cites W2225513920 @default.
- W3043338900 cites W2252174400 @default.
- W3043338900 cites W2265139392 @default.
- W3043338900 cites W2462070684 @default.
- W3043338900 cites W2516768073 @default.
- W3043338900 cites W2550513299 @default.
- W3043338900 cites W2617276432 @default.
- W3043338900 cites W2737721978 @default.
- W3043338900 cites W2763529688 @default.
- W3043338900 cites W2774085282 @default.
- W3043338900 cites W2782858626 @default.
- W3043338900 cites W2801296264 @default.
- W3043338900 cites W2801950623 @default.
- W3043338900 cites W2805727900 @default.
- W3043338900 cites W2807826313 @default.
- W3043338900 cites W2859280788 @default.
- W3043338900 cites W2885290617 @default.
- W3043338900 cites W2888878293 @default.
- W3043338900 cites W2889411959 @default.
- W3043338900 cites W2893267824 @default.
- W3043338900 cites W2941508423 @default.
- W3043338900 cites W2954251291 @default.
- W3043338900 cites W2964381450 @default.
- W3043338900 cites W2974825919 @default.
- W3043338900 cites W2981241428 @default.
- W3043338900 cites W2983522850 @default.
- W3043338900 cites W3000499424 @default.
- W3043338900 cites W3003459777 @default.
- W3043338900 cites W3016503898 @default.
- W3043338900 cites W836075775 @default.
- W3043338900 doi "https://doi.org/10.1016/j.addma.2020.101452" @default.
- W3043338900 hasPublicationYear "2020" @default.
- W3043338900 type Work @default.
- W3043338900 sameAs 3043338900 @default.
- W3043338900 citedByCount "29" @default.
- W3043338900 countsByYear W30433389002020 @default.
- W3043338900 countsByYear W30433389002021 @default.
- W3043338900 countsByYear W30433389002022 @default.
- W3043338900 countsByYear W30433389002023 @default.
- W3043338900 crossrefType "journal-article" @default.
- W3043338900 hasAuthorship W3043338900A5001854608 @default.
- W3043338900 hasAuthorship W3043338900A5036297123 @default.
- W3043338900 hasAuthorship W3043338900A5039866784 @default.
- W3043338900 hasAuthorship W3043338900A5041696331 @default.
- W3043338900 hasAuthorship W3043338900A5045742158 @default.
- W3043338900 hasAuthorship W3043338900A5052622340 @default.
- W3043338900 hasAuthorship W3043338900A5067434985 @default.
- W3043338900 hasAuthorship W3043338900A5073216008 @default.
- W3043338900 hasBestOaLocation W30433389001 @default.
- W3043338900 hasConcept C136229726 @default.
- W3043338900 hasConcept C144796933 @default.
- W3043338900 hasConcept C145420912 @default.
- W3043338900 hasConcept C15920480 @default.
- W3043338900 hasConcept C159985019 @default.
- W3043338900 hasConcept C171250308 @default.
- W3043338900 hasConcept C179428855 @default.
- W3043338900 hasConcept C192562407 @default.
- W3043338900 hasConcept C2779868350 @default.
- W3043338900 hasConcept C2781111393 @default.
- W3043338900 hasConcept C33923547 @default.
- W3043338900 hasConcept C45206210 @default.
- W3043338900 hasConcept C49892992 @default.
- W3043338900 hasConcept C521977710 @default.
- W3043338900 hasConcept C524769229 @default.