Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043359482> ?p ?o ?g. }
- W3043359482 endingPage "101552" @default.
- W3043359482 startingPage "101552" @default.
- W3043359482 abstract "In this paper, we investigate the predictive ability of three sentiment indices constructed by social media, newspaper, and Internet media news to forecast the realized volatility (RV) of SSEC from in- and out-of-sample perspectives. Our research is based on the heterogeneous autoregressive (HAR) framework. There are several notable findings. First, the in-sample estimation results suggest that the daily social media and Internet media news sentiment indices have significant impact for stock market volatility, while the sentiment index built by traditional newspaper have no impact. Second, the one-day-ahead out-of-sample forecasting results indicate that the two sentiment indices constructed by social media and Internet media news can considerably improve forecast accuracy. In addition, the model incorporating the positive and negative social media sentiment indices exhibits more superior forecasting performance. Third, we find only the sentiment index built by Internet media news can improve the mid- and long-run volatility predictive accuracy. Fourth, the empirical results based on alternative prediction periods and alternative volatility estimator confirm our conclusions are robust. Finally, we examine the predictability of the monthly sentiment indices and find that the two sentiment indices of social media and Internet media news contain more informative to forecast the monthly RV of SSEC, CSI800, and SZCI, however invalid for CSI300. • We construct three sentiment indices to predict the SSEC volatility. • The sentiment index built by traditional newspaper have no impact on the SSEC volatility. • The social and Internet media news sentiment can improve forecast accuracy at one-day-ahead forecasts. • The sentiment index by Internet media news can improve the mid- and long-run volatility predictive accuracy." @default.
- W3043359482 created "2020-07-23" @default.
- W3043359482 creator A5007790219 @default.
- W3043359482 creator A5015178973 @default.
- W3043359482 creator A5032636917 @default.
- W3043359482 creator A5088507879 @default.
- W3043359482 date "2020-10-01" @default.
- W3043359482 modified "2023-10-17" @default.
- W3043359482 title "Which sentiment index is more informative to forecast stock market volatility? Evidence from China" @default.
- W3043359482 cites W1558793738 @default.
- W3043359482 cites W1789808336 @default.
- W3043359482 cites W1966916709 @default.
- W3043359482 cites W2009957539 @default.
- W3043359482 cites W2010732706 @default.
- W3043359482 cites W2039796390 @default.
- W3043359482 cites W2048658075 @default.
- W3043359482 cites W2050643653 @default.
- W3043359482 cites W2065821126 @default.
- W3043359482 cites W2068138154 @default.
- W3043359482 cites W2076386123 @default.
- W3043359482 cites W2093230975 @default.
- W3043359482 cites W2095169544 @default.
- W3043359482 cites W2125520394 @default.
- W3043359482 cites W2128569377 @default.
- W3043359482 cites W2130117200 @default.
- W3043359482 cites W2146134639 @default.
- W3043359482 cites W2146270957 @default.
- W3043359482 cites W2194744835 @default.
- W3043359482 cites W2212682903 @default.
- W3043359482 cites W2468468780 @default.
- W3043359482 cites W2532876847 @default.
- W3043359482 cites W2566234880 @default.
- W3043359482 cites W2584187309 @default.
- W3043359482 cites W2617434451 @default.
- W3043359482 cites W2762142016 @default.
- W3043359482 cites W2789242193 @default.
- W3043359482 cites W2792833082 @default.
- W3043359482 cites W2853380097 @default.
- W3043359482 cites W2914477525 @default.
- W3043359482 cites W2915780587 @default.
- W3043359482 cites W2965281538 @default.
- W3043359482 cites W2971488781 @default.
- W3043359482 cites W2971716595 @default.
- W3043359482 cites W2975308768 @default.
- W3043359482 cites W3021580254 @default.
- W3043359482 cites W3105708681 @default.
- W3043359482 cites W3121191409 @default.
- W3043359482 cites W3121467893 @default.
- W3043359482 cites W3121532596 @default.
- W3043359482 cites W3122070388 @default.
- W3043359482 cites W3122268379 @default.
- W3043359482 cites W3122347531 @default.
- W3043359482 cites W3122843332 @default.
- W3043359482 cites W3123817259 @default.
- W3043359482 cites W3124336248 @default.
- W3043359482 cites W3124690764 @default.
- W3043359482 cites W3125011898 @default.
- W3043359482 cites W3125417746 @default.
- W3043359482 cites W3125987794 @default.
- W3043359482 cites W3126053622 @default.
- W3043359482 cites W4231546411 @default.
- W3043359482 cites W2141289405 @default.
- W3043359482 doi "https://doi.org/10.1016/j.irfa.2020.101552" @default.
- W3043359482 hasPublicationYear "2020" @default.
- W3043359482 type Work @default.
- W3043359482 sameAs 3043359482 @default.
- W3043359482 citedByCount "74" @default.
- W3043359482 countsByYear W30433594822020 @default.
- W3043359482 countsByYear W30433594822021 @default.
- W3043359482 countsByYear W30433594822022 @default.
- W3043359482 countsByYear W30433594822023 @default.
- W3043359482 crossrefType "journal-article" @default.
- W3043359482 hasAuthorship W3043359482A5007790219 @default.
- W3043359482 hasAuthorship W3043359482A5015178973 @default.
- W3043359482 hasAuthorship W3043359482A5032636917 @default.
- W3043359482 hasAuthorship W3043359482A5088507879 @default.
- W3043359482 hasConcept C110875604 @default.
- W3043359482 hasConcept C112698675 @default.
- W3043359482 hasConcept C127413603 @default.
- W3043359482 hasConcept C136764020 @default.
- W3043359482 hasConcept C144133560 @default.
- W3043359482 hasConcept C149782125 @default.
- W3043359482 hasConcept C154945302 @default.
- W3043359482 hasConcept C162324750 @default.
- W3043359482 hasConcept C166957645 @default.
- W3043359482 hasConcept C201280247 @default.
- W3043359482 hasConcept C204036174 @default.
- W3043359482 hasConcept C205649164 @default.
- W3043359482 hasConcept C2777382242 @default.
- W3043359482 hasConcept C2779343474 @default.
- W3043359482 hasConcept C2780299701 @default.
- W3043359482 hasConcept C41008148 @default.
- W3043359482 hasConcept C518677369 @default.
- W3043359482 hasConcept C66402592 @default.
- W3043359482 hasConcept C78519656 @default.
- W3043359482 hasConcept C91602232 @default.
- W3043359482 hasConceptScore W3043359482C110875604 @default.
- W3043359482 hasConceptScore W3043359482C112698675 @default.