Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043449013> ?p ?o ?g. }
- W3043449013 endingPage "108243" @default.
- W3043449013 startingPage "108243" @default.
- W3043449013 abstract "High frequency GPR signals offer high resolution while low frequency GPR signals offer greater depth of penetration. Effective fusion of multiple frequencies can combine the advantages of both. In addition, GPR attribute analysis can improve subsurface imaging, but a single attribute can only partly highlight details of different physical and geometrical properties of subsurface potential targets. In order to overcome these challenges, we implement an advanced multi-frequency and multi-attribute GPR data fusion approach based on 2-D wavelet transform utilizing a dynamic fusion weight scheme derived from edge detection algorithm, which is tested on data from a small glacier in the north-eastern Alps by 250 & 500 MHz central frequency antennas. Besides, information entropy and spatial frequency are developed as quantitative evaluation parameters to analyze the fusion outcomes. The results demonstrate that the proposed approach can enhance the efficiency and scope of GPR data interpretation in an automatic and objective way." @default.
- W3043449013 created "2020-07-23" @default.
- W3043449013 creator A5014691077 @default.
- W3043449013 creator A5022985434 @default.
- W3043449013 creator A5053143944 @default.
- W3043449013 creator A5067353440 @default.
- W3043449013 creator A5067438462 @default.
- W3043449013 creator A5070643545 @default.
- W3043449013 date "2020-12-01" @default.
- W3043449013 modified "2023-10-16" @default.
- W3043449013 title "Multi-frequency and multi-attribute GPR data fusion based on 2-D wavelet transform" @default.
- W3043449013 cites W1648310879 @default.
- W3043449013 cites W1943504337 @default.
- W3043449013 cites W1965672192 @default.
- W3043449013 cites W1978188570 @default.
- W3043449013 cites W1995875735 @default.
- W3043449013 cites W2012262430 @default.
- W3043449013 cites W2013301680 @default.
- W3043449013 cites W2016197888 @default.
- W3043449013 cites W2030922519 @default.
- W3043449013 cites W2045190801 @default.
- W3043449013 cites W2061988188 @default.
- W3043449013 cites W2088382656 @default.
- W3043449013 cites W2132984323 @default.
- W3043449013 cites W2153777140 @default.
- W3043449013 cites W2163935396 @default.
- W3043449013 cites W2288216403 @default.
- W3043449013 cites W2339556183 @default.
- W3043449013 cites W2416023390 @default.
- W3043449013 cites W2499639497 @default.
- W3043449013 cites W2752171134 @default.
- W3043449013 cites W2786410487 @default.
- W3043449013 cites W2801452763 @default.
- W3043449013 cites W2917480588 @default.
- W3043449013 doi "https://doi.org/10.1016/j.measurement.2020.108243" @default.
- W3043449013 hasPublicationYear "2020" @default.
- W3043449013 type Work @default.
- W3043449013 sameAs 3043449013 @default.
- W3043449013 citedByCount "21" @default.
- W3043449013 countsByYear W30434490132020 @default.
- W3043449013 countsByYear W30434490132021 @default.
- W3043449013 countsByYear W30434490132022 @default.
- W3043449013 countsByYear W30434490132023 @default.
- W3043449013 crossrefType "journal-article" @default.
- W3043449013 hasAuthorship W3043449013A5014691077 @default.
- W3043449013 hasAuthorship W3043449013A5022985434 @default.
- W3043449013 hasAuthorship W3043449013A5053143944 @default.
- W3043449013 hasAuthorship W3043449013A5067353440 @default.
- W3043449013 hasAuthorship W3043449013A5067438462 @default.
- W3043449013 hasAuthorship W3043449013A5070643545 @default.
- W3043449013 hasBestOaLocation W30434490132 @default.
- W3043449013 hasConcept C106301342 @default.
- W3043449013 hasConcept C115961682 @default.
- W3043449013 hasConcept C121332964 @default.
- W3043449013 hasConcept C124101348 @default.
- W3043449013 hasConcept C127313418 @default.
- W3043449013 hasConcept C138885662 @default.
- W3043449013 hasConcept C153180895 @default.
- W3043449013 hasConcept C154945302 @default.
- W3043449013 hasConcept C158525013 @default.
- W3043449013 hasConcept C196216189 @default.
- W3043449013 hasConcept C31972630 @default.
- W3043449013 hasConcept C33954974 @default.
- W3043449013 hasConcept C41008148 @default.
- W3043449013 hasConcept C41895202 @default.
- W3043449013 hasConcept C47432892 @default.
- W3043449013 hasConcept C554190296 @default.
- W3043449013 hasConcept C62520636 @default.
- W3043449013 hasConcept C62649853 @default.
- W3043449013 hasConcept C69744172 @default.
- W3043449013 hasConcept C71813955 @default.
- W3043449013 hasConcept C76155785 @default.
- W3043449013 hasConceptScore W3043449013C106301342 @default.
- W3043449013 hasConceptScore W3043449013C115961682 @default.
- W3043449013 hasConceptScore W3043449013C121332964 @default.
- W3043449013 hasConceptScore W3043449013C124101348 @default.
- W3043449013 hasConceptScore W3043449013C127313418 @default.
- W3043449013 hasConceptScore W3043449013C138885662 @default.
- W3043449013 hasConceptScore W3043449013C153180895 @default.
- W3043449013 hasConceptScore W3043449013C154945302 @default.
- W3043449013 hasConceptScore W3043449013C158525013 @default.
- W3043449013 hasConceptScore W3043449013C196216189 @default.
- W3043449013 hasConceptScore W3043449013C31972630 @default.
- W3043449013 hasConceptScore W3043449013C33954974 @default.
- W3043449013 hasConceptScore W3043449013C41008148 @default.
- W3043449013 hasConceptScore W3043449013C41895202 @default.
- W3043449013 hasConceptScore W3043449013C47432892 @default.
- W3043449013 hasConceptScore W3043449013C554190296 @default.
- W3043449013 hasConceptScore W3043449013C62520636 @default.
- W3043449013 hasConceptScore W3043449013C62649853 @default.
- W3043449013 hasConceptScore W3043449013C69744172 @default.
- W3043449013 hasConceptScore W3043449013C71813955 @default.
- W3043449013 hasConceptScore W3043449013C76155785 @default.
- W3043449013 hasFunder F4320310282 @default.
- W3043449013 hasFunder F4320321001 @default.
- W3043449013 hasFunder F4320322927 @default.
- W3043449013 hasLocation W30434490131 @default.
- W3043449013 hasLocation W30434490132 @default.