Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043449900> ?p ?o ?g. }
- W3043449900 endingPage "104214" @default.
- W3043449900 startingPage "104214" @default.
- W3043449900 abstract "At present, enterprises have introduced the Internet of Things (IoT) technology to monitor and evaluate the safety status of oil depots, allowing for the collection of a substantial amount of multi-source monitoring data from factories. However, sensor monitoring data is often inaccurate and fuzzy. To improve the reliability of risk prevention and control based on multi-source sensor data, this study proposed a CM-BJS-DS model based on the cloud model (CM), the Belief Jensen-Shannon (BJS) divergence and Dempster-Shafer(D-S) evidence theory. First, the relevant evaluation factors of the accident and their threshold intervals of different risk levels were determined, and the fuzzy cloud membership functions (FCMFs) corresponding to different risk levels were constructed. Then, the sensor monitoring data were processed using the correlation measurement of the FCMF, and basic probability assignments (BPAs) were generated under the risk assessment frame of discernment. Finally, the BPAs were pre-processed by the improved evidence fusion model and the accident risk level was evaluated. Based on the monitoring data, a case study was performed to assess the risk level of vapor cloud explosion (VCE) accidents due to liquid petroleum gas (LPG) tank leaks. The results show that the proposed method presents the following characteristics: (i) The BPAs were constructed based on the monitoring data, which reduced the subjectivity of the construction process; (ii) Compared with single sensors, the multiple sensor fusion evaluation yielded more specific results; (iii) When dealing with highly conflicting evidence, the evaluation results of the proposed method exhibited a higher belief degree. This method can be used as a decision-making tool to detect potential risks and identify critical risk spots to improve the specificity and efficiency of emergency response." @default.
- W3043449900 created "2020-07-23" @default.
- W3043449900 creator A5040829616 @default.
- W3043449900 creator A5064867103 @default.
- W3043449900 creator A5080066087 @default.
- W3043449900 creator A5087862970 @default.
- W3043449900 date "2020-09-01" @default.
- W3043449900 modified "2023-10-11" @default.
- W3043449900 title "Risk assessment of an oil depot using the improved multi-sensor fusion approach based on the cloud model and the belief Jensen-Shannon divergence" @default.
- W3043449900 cites W1508386957 @default.
- W3043449900 cites W1578355767 @default.
- W3043449900 cites W1974339009 @default.
- W3043449900 cites W1981643872 @default.
- W3043449900 cites W1990269777 @default.
- W3043449900 cites W1996486820 @default.
- W3043449900 cites W2011706192 @default.
- W3043449900 cites W2023716082 @default.
- W3043449900 cites W2038896048 @default.
- W3043449900 cites W2045116456 @default.
- W3043449900 cites W2045325910 @default.
- W3043449900 cites W2045508254 @default.
- W3043449900 cites W2052745227 @default.
- W3043449900 cites W2055338980 @default.
- W3043449900 cites W2055680808 @default.
- W3043449900 cites W2060592074 @default.
- W3043449900 cites W2064962332 @default.
- W3043449900 cites W2078410661 @default.
- W3043449900 cites W2085154346 @default.
- W3043449900 cites W2114463407 @default.
- W3043449900 cites W2141347502 @default.
- W3043449900 cites W2154522775 @default.
- W3043449900 cites W2158449659 @default.
- W3043449900 cites W2163496225 @default.
- W3043449900 cites W2169353732 @default.
- W3043449900 cites W2297152043 @default.
- W3043449900 cites W2315739934 @default.
- W3043449900 cites W2329244233 @default.
- W3043449900 cites W2329892390 @default.
- W3043449900 cites W2526850314 @default.
- W3043449900 cites W2537787207 @default.
- W3043449900 cites W2606501176 @default.
- W3043449900 cites W2623386274 @default.
- W3043449900 cites W2751401576 @default.
- W3043449900 cites W2751945336 @default.
- W3043449900 cites W2765212055 @default.
- W3043449900 cites W2767606203 @default.
- W3043449900 cites W2789233869 @default.
- W3043449900 cites W2802655103 @default.
- W3043449900 cites W2811273693 @default.
- W3043449900 cites W2896469545 @default.
- W3043449900 cites W2896727370 @default.
- W3043449900 cites W2898393698 @default.
- W3043449900 cites W2902788385 @default.
- W3043449900 cites W2911495423 @default.
- W3043449900 cites W2937190921 @default.
- W3043449900 cites W2963727615 @default.
- W3043449900 cites W2970160579 @default.
- W3043449900 cites W2973499833 @default.
- W3043449900 cites W2974873344 @default.
- W3043449900 cites W2982054448 @default.
- W3043449900 cites W2990854889 @default.
- W3043449900 cites W3003821972 @default.
- W3043449900 cites W4378619706 @default.
- W3043449900 cites W620266080 @default.
- W3043449900 doi "https://doi.org/10.1016/j.jlp.2020.104214" @default.
- W3043449900 hasPublicationYear "2020" @default.
- W3043449900 type Work @default.
- W3043449900 sameAs 3043449900 @default.
- W3043449900 citedByCount "20" @default.
- W3043449900 countsByYear W30434499002021 @default.
- W3043449900 countsByYear W30434499002022 @default.
- W3043449900 countsByYear W30434499002023 @default.
- W3043449900 crossrefType "journal-article" @default.
- W3043449900 hasAuthorship W3043449900A5040829616 @default.
- W3043449900 hasAuthorship W3043449900A5064867103 @default.
- W3043449900 hasAuthorship W3043449900A5080066087 @default.
- W3043449900 hasAuthorship W3043449900A5087862970 @default.
- W3043449900 hasConcept C105795698 @default.
- W3043449900 hasConcept C111919701 @default.
- W3043449900 hasConcept C121332964 @default.
- W3043449900 hasConcept C124101348 @default.
- W3043449900 hasConcept C127413603 @default.
- W3043449900 hasConcept C133462117 @default.
- W3043449900 hasConcept C138885662 @default.
- W3043449900 hasConcept C154945302 @default.
- W3043449900 hasConcept C163258240 @default.
- W3043449900 hasConcept C200601418 @default.
- W3043449900 hasConcept C207390915 @default.
- W3043449900 hasConcept C33923547 @default.
- W3043449900 hasConcept C33954974 @default.
- W3043449900 hasConcept C41008148 @default.
- W3043449900 hasConcept C41895202 @default.
- W3043449900 hasConcept C43214815 @default.
- W3043449900 hasConcept C58166 @default.
- W3043449900 hasConcept C62520636 @default.
- W3043449900 hasConcept C79974875 @default.
- W3043449900 hasConcept C98045186 @default.
- W3043449900 hasConceptScore W3043449900C105795698 @default.