Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043459142> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3043459142 endingPage "107092" @default.
- W3043459142 startingPage "107092" @default.
- W3043459142 abstract "The number of single-person households (SPHs) has been consistently increasing owing to various social issues, such as separation by death, declining marriage rate, and increasing divorce rate. Unfortunately, this demographical change is creating a new social problem, namely, lonely death. In response to this problem, many researchers have attempted to develop wearable sensor-based and computer vision-based systems that monitor occupant behaviors and detect possible emergency events in indoor environments. However, existing approaches face challenges in monitoring SPHs owing to their technical disadvantages; for instance, if the occupant is not wearing the electronic sensor, or if the signal is occluded by other objects, it is not possible to monitor SPHs. Moreover, as existing studies focus only on classifying the occupant's daily activities, such as eating, sitting, and talking, the emergency events that are significant for SPH monitoring are still unclear. To address these challenges, this study investigates emergency events that have a critical impact on the occupant's health and proposes a deep learning-based sound recognition model to monitor occupant behaviors and detect possible emergency events in SPH environments. Experiments are conducted using audio data collected from actual SPH home environments and online data-sharing websites. The average precision and recall rates of the developed model are 78.0% and 90.8%, respectively. The results demonstrate that the developed model could successfully distinguish emergency sound events from the sounds of regular human activities. The findings can not only secure and rescue SPHs in danger but also provide new research directions for indoor occupant and event monitoring. • Major emergency events were monitored in single person household environments. • Proposed a deep learning-based sound recognition model to monitor occupant behavior. • Average precision and recall rates were 78.0% and 90.8%, respectively. • Baselines for occupant behavior and abnormal event monitoring." @default.
- W3043459142 created "2020-07-23" @default.
- W3043459142 creator A5024293481 @default.
- W3043459142 creator A5068272420 @default.
- W3043459142 creator A5072157215 @default.
- W3043459142 creator A5083479521 @default.
- W3043459142 date "2020-08-01" @default.
- W3043459142 modified "2023-10-17" @default.
- W3043459142 title "Occupant behavior monitoring and emergency event detection in single-person households using deep learning-based sound recognition" @default.
- W3043459142 cites W1820195803 @default.
- W3043459142 cites W1974388905 @default.
- W3043459142 cites W2024572797 @default.
- W3043459142 cites W2067073444 @default.
- W3043459142 cites W2076885544 @default.
- W3043459142 cites W2123843894 @default.
- W3043459142 cites W2148143831 @default.
- W3043459142 cites W2161826908 @default.
- W3043459142 cites W2244564463 @default.
- W3043459142 cites W2261950180 @default.
- W3043459142 cites W2340862004 @default.
- W3043459142 cites W2594230123 @default.
- W3043459142 cites W2599181565 @default.
- W3043459142 cites W2607540039 @default.
- W3043459142 cites W2610124020 @default.
- W3043459142 cites W2749809371 @default.
- W3043459142 cites W2761246525 @default.
- W3043459142 cites W2782274301 @default.
- W3043459142 cites W2811468573 @default.
- W3043459142 cites W2890186081 @default.
- W3043459142 cites W2899430105 @default.
- W3043459142 cites W2914228440 @default.
- W3043459142 cites W2916002713 @default.
- W3043459142 cites W2942937015 @default.
- W3043459142 cites W3006320450 @default.
- W3043459142 cites W3098357269 @default.
- W3043459142 doi "https://doi.org/10.1016/j.buildenv.2020.107092" @default.
- W3043459142 hasPublicationYear "2020" @default.
- W3043459142 type Work @default.
- W3043459142 sameAs 3043459142 @default.
- W3043459142 citedByCount "24" @default.
- W3043459142 countsByYear W30434591422020 @default.
- W3043459142 countsByYear W30434591422021 @default.
- W3043459142 countsByYear W30434591422022 @default.
- W3043459142 countsByYear W30434591422023 @default.
- W3043459142 crossrefType "journal-article" @default.
- W3043459142 hasAuthorship W3043459142A5024293481 @default.
- W3043459142 hasAuthorship W3043459142A5068272420 @default.
- W3043459142 hasAuthorship W3043459142A5072157215 @default.
- W3043459142 hasAuthorship W3043459142A5083479521 @default.
- W3043459142 hasBestOaLocation W30434591421 @default.
- W3043459142 hasConcept C107457646 @default.
- W3043459142 hasConcept C108583219 @default.
- W3043459142 hasConcept C114793014 @default.
- W3043459142 hasConcept C121332964 @default.
- W3043459142 hasConcept C127313418 @default.
- W3043459142 hasConcept C149635348 @default.
- W3043459142 hasConcept C150594956 @default.
- W3043459142 hasConcept C154945302 @default.
- W3043459142 hasConcept C203718221 @default.
- W3043459142 hasConcept C2779662365 @default.
- W3043459142 hasConcept C38652104 @default.
- W3043459142 hasConcept C41008148 @default.
- W3043459142 hasConcept C54290928 @default.
- W3043459142 hasConcept C62520636 @default.
- W3043459142 hasConceptScore W3043459142C107457646 @default.
- W3043459142 hasConceptScore W3043459142C108583219 @default.
- W3043459142 hasConceptScore W3043459142C114793014 @default.
- W3043459142 hasConceptScore W3043459142C121332964 @default.
- W3043459142 hasConceptScore W3043459142C127313418 @default.
- W3043459142 hasConceptScore W3043459142C149635348 @default.
- W3043459142 hasConceptScore W3043459142C150594956 @default.
- W3043459142 hasConceptScore W3043459142C154945302 @default.
- W3043459142 hasConceptScore W3043459142C203718221 @default.
- W3043459142 hasConceptScore W3043459142C2779662365 @default.
- W3043459142 hasConceptScore W3043459142C38652104 @default.
- W3043459142 hasConceptScore W3043459142C41008148 @default.
- W3043459142 hasConceptScore W3043459142C54290928 @default.
- W3043459142 hasConceptScore W3043459142C62520636 @default.
- W3043459142 hasFunder F4320322010 @default.
- W3043459142 hasLocation W30434591421 @default.
- W3043459142 hasOpenAccess W3043459142 @default.
- W3043459142 hasPrimaryLocation W30434591421 @default.
- W3043459142 hasRelatedWork W1486044746 @default.
- W3043459142 hasRelatedWork W1978333673 @default.
- W3043459142 hasRelatedWork W2012157391 @default.
- W3043459142 hasRelatedWork W2090800726 @default.
- W3043459142 hasRelatedWork W2113982512 @default.
- W3043459142 hasRelatedWork W2141434663 @default.
- W3043459142 hasRelatedWork W2562087406 @default.
- W3043459142 hasRelatedWork W2585232498 @default.
- W3043459142 hasRelatedWork W2943515292 @default.
- W3043459142 hasRelatedWork W3107039731 @default.
- W3043459142 hasVolume "181" @default.
- W3043459142 isParatext "false" @default.
- W3043459142 isRetracted "false" @default.
- W3043459142 magId "3043459142" @default.
- W3043459142 workType "article" @default.