Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043465981> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3043465981 abstract "As a proposal-free approach, instance segmentation through pixel embedding learning and clustering is gaining more emphasis. Compared with bounding box refinement approaches, such as Mask R-CNN, it has potential advantages in handling complex shapes and dense objects. In this work, we propose a simple, yet highly effective, architecture for object-aware embedding learning. A distance regression module is incorporated into our architecture to generate seeds for fast clustering. At the same time, we show that the features learned by the distance regression module are able to promote the accuracy of learned object-aware embeddings significantly. By simply concatenating features of the distance regression module to the images as inputs of the embedding module, the mSBD scores on the CVPPP Leaf Segmentation Challenge can be further improved by more than 8% compared to the identical set-up without concatenation, yielding the best overall result amongst the leaderboard at CodaLab." @default.
- W3043465981 created "2020-07-23" @default.
- W3043465981 creator A5012324763 @default.
- W3043465981 creator A5015610386 @default.
- W3043465981 creator A5064747056 @default.
- W3043465981 date "2020-07-13" @default.
- W3043465981 modified "2023-09-24" @default.
- W3043465981 title "Improving Pixel Embedding Learning through Intermediate Distance Regression Supervision for Instance Segmentation" @default.
- W3043465981 cites W1522301498 @default.
- W3043465981 cites W1677182931 @default.
- W3043465981 cites W2019062120 @default.
- W3043465981 cites W2039236381 @default.
- W3043465981 cites W2164500538 @default.
- W3043465981 cites W2180566385 @default.
- W3043465981 cites W2278786050 @default.
- W3043465981 cites W2296073425 @default.
- W3043465981 cites W2307770531 @default.
- W3043465981 cites W2613718673 @default.
- W3043465981 cites W2744404335 @default.
- W3043465981 cites W2806190463 @default.
- W3043465981 cites W2884131745 @default.
- W3043465981 cites W2884588043 @default.
- W3043465981 cites W2895933766 @default.
- W3043465981 cites W2962676885 @default.
- W3043465981 cites W2963150697 @default.
- W3043465981 cites W2963775509 @default.
- W3043465981 cites W2980134246 @default.
- W3043465981 cites W2982770724 @default.
- W3043465981 cites W3013155770 @default.
- W3043465981 cites W3034428102 @default.
- W3043465981 cites W3034826836 @default.
- W3043465981 cites W3035049382 @default.
- W3043465981 cites W3100296314 @default.
- W3043465981 cites W636712700 @default.
- W3043465981 doi "https://doi.org/10.48550/arxiv.2007.06660" @default.
- W3043465981 hasPublicationYear "2020" @default.
- W3043465981 type Work @default.
- W3043465981 sameAs 3043465981 @default.
- W3043465981 citedByCount "0" @default.
- W3043465981 crossrefType "posted-content" @default.
- W3043465981 hasAuthorship W3043465981A5012324763 @default.
- W3043465981 hasAuthorship W3043465981A5015610386 @default.
- W3043465981 hasAuthorship W3043465981A5064747056 @default.
- W3043465981 hasBestOaLocation W30434659811 @default.
- W3043465981 hasConcept C105795698 @default.
- W3043465981 hasConcept C114614502 @default.
- W3043465981 hasConcept C115961682 @default.
- W3043465981 hasConcept C119857082 @default.
- W3043465981 hasConcept C147037132 @default.
- W3043465981 hasConcept C153180895 @default.
- W3043465981 hasConcept C154945302 @default.
- W3043465981 hasConcept C160633673 @default.
- W3043465981 hasConcept C177264268 @default.
- W3043465981 hasConcept C199360897 @default.
- W3043465981 hasConcept C2781238097 @default.
- W3043465981 hasConcept C33923547 @default.
- W3043465981 hasConcept C41008148 @default.
- W3043465981 hasConcept C41608201 @default.
- W3043465981 hasConcept C63584917 @default.
- W3043465981 hasConcept C73555534 @default.
- W3043465981 hasConcept C83546350 @default.
- W3043465981 hasConcept C87619178 @default.
- W3043465981 hasConcept C89600930 @default.
- W3043465981 hasConceptScore W3043465981C105795698 @default.
- W3043465981 hasConceptScore W3043465981C114614502 @default.
- W3043465981 hasConceptScore W3043465981C115961682 @default.
- W3043465981 hasConceptScore W3043465981C119857082 @default.
- W3043465981 hasConceptScore W3043465981C147037132 @default.
- W3043465981 hasConceptScore W3043465981C153180895 @default.
- W3043465981 hasConceptScore W3043465981C154945302 @default.
- W3043465981 hasConceptScore W3043465981C160633673 @default.
- W3043465981 hasConceptScore W3043465981C177264268 @default.
- W3043465981 hasConceptScore W3043465981C199360897 @default.
- W3043465981 hasConceptScore W3043465981C2781238097 @default.
- W3043465981 hasConceptScore W3043465981C33923547 @default.
- W3043465981 hasConceptScore W3043465981C41008148 @default.
- W3043465981 hasConceptScore W3043465981C41608201 @default.
- W3043465981 hasConceptScore W3043465981C63584917 @default.
- W3043465981 hasConceptScore W3043465981C73555534 @default.
- W3043465981 hasConceptScore W3043465981C83546350 @default.
- W3043465981 hasConceptScore W3043465981C87619178 @default.
- W3043465981 hasConceptScore W3043465981C89600930 @default.
- W3043465981 hasLocation W30434659811 @default.
- W3043465981 hasOpenAccess W3043465981 @default.
- W3043465981 hasPrimaryLocation W30434659811 @default.
- W3043465981 hasRelatedWork W10746426 @default.
- W3043465981 hasRelatedWork W11130107 @default.
- W3043465981 hasRelatedWork W14369711 @default.
- W3043465981 hasRelatedWork W2920969 @default.
- W3043465981 hasRelatedWork W5598288 @default.
- W3043465981 hasRelatedWork W6581905 @default.
- W3043465981 hasRelatedWork W6901147 @default.
- W3043465981 hasRelatedWork W7746136 @default.
- W3043465981 hasRelatedWork W8901897 @default.
- W3043465981 hasRelatedWork W11907932 @default.
- W3043465981 isParatext "false" @default.
- W3043465981 isRetracted "false" @default.
- W3043465981 magId "3043465981" @default.
- W3043465981 workType "article" @default.