Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043488929> ?p ?o ?g. }
- W3043488929 endingPage "100122" @default.
- W3043488929 startingPage "100122" @default.
- W3043488929 abstract "Machine learning has been shown as a promising approach to mine larger datasets, such as those that comprise data from a broad range of Internet of Things devices, across complex environment(s) to solve different problems. This paper surveys existing literature on the potential of using supervised classical machine learning techniques, such as K-Nearest Neigbour, Support Vector Machines, Naive Bayes and Random Forest algorithms, in performing live digital forensics for different IoT configurations. There are also a number of challenges associated with the use of machine learning techniques, as discussed in this paper." @default.
- W3043488929 created "2020-07-23" @default.
- W3043488929 creator A5001801878 @default.
- W3043488929 creator A5005434803 @default.
- W3043488929 creator A5017842570 @default.
- W3043488929 creator A5025097632 @default.
- W3043488929 creator A5050385229 @default.
- W3043488929 creator A5063662573 @default.
- W3043488929 date "2020-12-01" @default.
- W3043488929 modified "2023-10-16" @default.
- W3043488929 title "Quantifying the need for supervised machine learning in conducting live forensic analysis of emergent configurations (ECO) in IoT environments" @default.
- W3043488929 cites W1493357981 @default.
- W3043488929 cites W1978501154 @default.
- W3043488929 cites W2025428542 @default.
- W3043488929 cites W2049929596 @default.
- W3043488929 cites W2139421948 @default.
- W3043488929 cites W2147031008 @default.
- W3043488929 cites W2172246201 @default.
- W3043488929 cites W2413693505 @default.
- W3043488929 cites W2512893459 @default.
- W3043488929 cites W2525228524 @default.
- W3043488929 cites W2556103926 @default.
- W3043488929 cites W2560124394 @default.
- W3043488929 cites W2563236595 @default.
- W3043488929 cites W2616461671 @default.
- W3043488929 cites W2656195397 @default.
- W3043488929 cites W2786460113 @default.
- W3043488929 cites W2789712710 @default.
- W3043488929 cites W2890947965 @default.
- W3043488929 cites W2911964244 @default.
- W3043488929 cites W2913500385 @default.
- W3043488929 cites W2940523353 @default.
- W3043488929 cites W2940534673 @default.
- W3043488929 cites W2942027462 @default.
- W3043488929 cites W2964150038 @default.
- W3043488929 cites W3028069824 @default.
- W3043488929 cites W4239510810 @default.
- W3043488929 cites W4249247926 @default.
- W3043488929 cites W4253033559 @default.
- W3043488929 cites W2770448409 @default.
- W3043488929 doi "https://doi.org/10.1016/j.fsir.2020.100122" @default.
- W3043488929 hasPublicationYear "2020" @default.
- W3043488929 type Work @default.
- W3043488929 sameAs 3043488929 @default.
- W3043488929 citedByCount "26" @default.
- W3043488929 countsByYear W30434889292021 @default.
- W3043488929 countsByYear W30434889292022 @default.
- W3043488929 countsByYear W30434889292023 @default.
- W3043488929 crossrefType "journal-article" @default.
- W3043488929 hasAuthorship W3043488929A5001801878 @default.
- W3043488929 hasAuthorship W3043488929A5005434803 @default.
- W3043488929 hasAuthorship W3043488929A5017842570 @default.
- W3043488929 hasAuthorship W3043488929A5025097632 @default.
- W3043488929 hasAuthorship W3043488929A5050385229 @default.
- W3043488929 hasAuthorship W3043488929A5063662573 @default.
- W3043488929 hasBestOaLocation W30434889291 @default.
- W3043488929 hasConcept C107673813 @default.
- W3043488929 hasConcept C119857082 @default.
- W3043488929 hasConcept C12267149 @default.
- W3043488929 hasConcept C124101348 @default.
- W3043488929 hasConcept C127413603 @default.
- W3043488929 hasConcept C136389625 @default.
- W3043488929 hasConcept C136764020 @default.
- W3043488929 hasConcept C146978453 @default.
- W3043488929 hasConcept C154945302 @default.
- W3043488929 hasConcept C169258074 @default.
- W3043488929 hasConcept C204323151 @default.
- W3043488929 hasConcept C207201462 @default.
- W3043488929 hasConcept C2522767166 @default.
- W3043488929 hasConcept C38652104 @default.
- W3043488929 hasConcept C41008148 @default.
- W3043488929 hasConcept C50644808 @default.
- W3043488929 hasConcept C52001869 @default.
- W3043488929 hasConcept C81860439 @default.
- W3043488929 hasConcept C84418412 @default.
- W3043488929 hasConceptScore W3043488929C107673813 @default.
- W3043488929 hasConceptScore W3043488929C119857082 @default.
- W3043488929 hasConceptScore W3043488929C12267149 @default.
- W3043488929 hasConceptScore W3043488929C124101348 @default.
- W3043488929 hasConceptScore W3043488929C127413603 @default.
- W3043488929 hasConceptScore W3043488929C136389625 @default.
- W3043488929 hasConceptScore W3043488929C136764020 @default.
- W3043488929 hasConceptScore W3043488929C146978453 @default.
- W3043488929 hasConceptScore W3043488929C154945302 @default.
- W3043488929 hasConceptScore W3043488929C169258074 @default.
- W3043488929 hasConceptScore W3043488929C204323151 @default.
- W3043488929 hasConceptScore W3043488929C207201462 @default.
- W3043488929 hasConceptScore W3043488929C2522767166 @default.
- W3043488929 hasConceptScore W3043488929C38652104 @default.
- W3043488929 hasConceptScore W3043488929C41008148 @default.
- W3043488929 hasConceptScore W3043488929C50644808 @default.
- W3043488929 hasConceptScore W3043488929C52001869 @default.
- W3043488929 hasConceptScore W3043488929C81860439 @default.
- W3043488929 hasConceptScore W3043488929C84418412 @default.
- W3043488929 hasLocation W30434889291 @default.
- W3043488929 hasLocation W30434889292 @default.
- W3043488929 hasLocation W30434889293 @default.
- W3043488929 hasOpenAccess W3043488929 @default.