Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043609274> ?p ?o ?g. }
- W3043609274 abstract "Plants produce diverse metabolites via enzymes metabolic pathways important for plant survival, human nutrition and medicine. However, most plant enzyme genes are of unknown pathway membership. While some genes in the same pathways can be identified based on correlated expression, such correlation may exist only under specific spatiotemporal and conditional contexts. By considering 656 combinations of tomato gene expression datasets calculated with eight co-expression measures, we evaluated the performance of naive prediction (based on expression similarities to pathways), unsupervised and supervised learning methods in predicting memberships in 85 metabolic pathways. We found that optimal predictions for different pathways require different dataset, which tend to be associated with the biological processes related to the pathway functions. In addition, naive prediction has significantly lower performance compared to machine learning methods. Interestingly, the unsupervised learning approach has better performance in 52 pathways than the supervised approach, which may be attributed to the need for more data with supervised learning. Furthermore, machine learning clustering/models using gene-to-pathway expression similarities outperform that with gene expression profiles. Altogether, our study highlights the need to extensively explore expression-based features to maximize the utility of expression data for pinpointing pathway membership. Through this detailed exploration, novel connections between pathways and biological processes can also be identified based on the optimal expression dataset used, improving our mechanistic understanding of the metabolic network." @default.
- W3043609274 created "2020-07-23" @default.
- W3043609274 creator A5020620137 @default.
- W3043609274 creator A5047371223 @default.
- W3043609274 creator A5059271655 @default.
- W3043609274 creator A5066020984 @default.
- W3043609274 creator A5075671562 @default.
- W3043609274 creator A5078024122 @default.
- W3043609274 date "2020-07-16" @default.
- W3043609274 modified "2023-10-05" @default.
- W3043609274 title "Optimizing the use of gene expression data to predict metabolic pathway memberships with unsupervised and supervised machine learning" @default.
- W3043609274 cites W1505191356 @default.
- W3043609274 cites W1900646844 @default.
- W3043609274 cites W1918715453 @default.
- W3043609274 cites W1965092590 @default.
- W3043609274 cites W1967062273 @default.
- W3043609274 cites W1977607884 @default.
- W3043609274 cites W1979485603 @default.
- W3043609274 cites W1979861676 @default.
- W3043609274 cites W1988397319 @default.
- W3043609274 cites W1990512452 @default.
- W3043609274 cites W1991181258 @default.
- W3043609274 cites W1992581858 @default.
- W3043609274 cites W1995869668 @default.
- W3043609274 cites W1996025323 @default.
- W3043609274 cites W1999498230 @default.
- W3043609274 cites W2006367501 @default.
- W3043609274 cites W2006864838 @default.
- W3043609274 cites W2019098678 @default.
- W3043609274 cites W2040286969 @default.
- W3043609274 cites W2040567177 @default.
- W3043609274 cites W2047178542 @default.
- W3043609274 cites W2077748368 @default.
- W3043609274 cites W2078689865 @default.
- W3043609274 cites W2082220672 @default.
- W3043609274 cites W2088707494 @default.
- W3043609274 cites W2093095455 @default.
- W3043609274 cites W2101234009 @default.
- W3043609274 cites W2101665409 @default.
- W3043609274 cites W2102471334 @default.
- W3043609274 cites W2104693064 @default.
- W3043609274 cites W2107714719 @default.
- W3043609274 cites W2109743008 @default.
- W3043609274 cites W2115799085 @default.
- W3043609274 cites W2121572213 @default.
- W3043609274 cites W2136145671 @default.
- W3043609274 cites W2136549265 @default.
- W3043609274 cites W2141622431 @default.
- W3043609274 cites W2142075090 @default.
- W3043609274 cites W2146260091 @default.
- W3043609274 cites W2147321255 @default.
- W3043609274 cites W2152379610 @default.
- W3043609274 cites W2156654220 @default.
- W3043609274 cites W2164205011 @default.
- W3043609274 cites W2166830668 @default.
- W3043609274 cites W2167522959 @default.
- W3043609274 cites W2170455232 @default.
- W3043609274 cites W2177615447 @default.
- W3043609274 cites W2190741296 @default.
- W3043609274 cites W2268044838 @default.
- W3043609274 cites W2297880670 @default.
- W3043609274 cites W2313540090 @default.
- W3043609274 cites W2560266832 @default.
- W3043609274 cites W2565065834 @default.
- W3043609274 cites W2589515024 @default.
- W3043609274 cites W2607186010 @default.
- W3043609274 cites W2744742909 @default.
- W3043609274 cites W2766141289 @default.
- W3043609274 cites W2775315818 @default.
- W3043609274 cites W2775530945 @default.
- W3043609274 cites W2891533746 @default.
- W3043609274 cites W2904574294 @default.
- W3043609274 cites W2914769190 @default.
- W3043609274 cites W2944421815 @default.
- W3043609274 cites W2950056962 @default.
- W3043609274 cites W2951638474 @default.
- W3043609274 cites W2953042895 @default.
- W3043609274 cites W2969917649 @default.
- W3043609274 cites W2978877397 @default.
- W3043609274 cites W2990718515 @default.
- W3043609274 cites W3008695158 @default.
- W3043609274 cites W3025402515 @default.
- W3043609274 hasPublicationYear "2020" @default.
- W3043609274 type Work @default.
- W3043609274 sameAs 3043609274 @default.
- W3043609274 citedByCount "0" @default.
- W3043609274 crossrefType "posted-content" @default.
- W3043609274 hasAuthorship W3043609274A5020620137 @default.
- W3043609274 hasAuthorship W3043609274A5047371223 @default.
- W3043609274 hasAuthorship W3043609274A5059271655 @default.
- W3043609274 hasAuthorship W3043609274A5066020984 @default.
- W3043609274 hasAuthorship W3043609274A5075671562 @default.
- W3043609274 hasAuthorship W3043609274A5078024122 @default.
- W3043609274 hasBestOaLocation W30436092741 @default.
- W3043609274 hasConcept C104317684 @default.
- W3043609274 hasConcept C119857082 @default.
- W3043609274 hasConcept C136389625 @default.
- W3043609274 hasConcept C150194340 @default.
- W3043609274 hasConcept C154945302 @default.
- W3043609274 hasConcept C192989942 @default.