Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043664831> ?p ?o ?g. }
- W3043664831 endingPage "113722" @default.
- W3043664831 startingPage "113722" @default.
- W3043664831 abstract "In this paper, we start from relaxing assumptions of traditional hidden Markov model then develop a novel framework for decoding the latent states, from which the dynamics of multi-variable financial data is generated. To construct the framework, we model the observed variables as a p-order vector autoregressive process, allow the latent state to evolve through a semi-Markov chain, and shrink the auto-regression and covariance matrices via a penalized maximization likelihood method. Using the 50-dimensional simulated data, the 12-dimensional 5-min order book data of the Chinese CSI 300 index component stocks, the 49-dimensional daily data of U.S. industry portfolio, and 1-dimensional hourly data of four primary foreign exchange rates, our empirical analyses show that the proposed model outperforms the alternative model in accurately recognizing anomalous events and achieves better sharp ratio in a pseudo trading strategy via the latent states. The superior performance is across the data frequency of minute, hour and daily, the dimension of one, twelve, and fifty, the data type of stock, foreign exchange rate, and industry portfolio." @default.
- W3043664831 created "2020-07-23" @default.
- W3043664831 creator A5000492991 @default.
- W3043664831 creator A5029484872 @default.
- W3043664831 creator A5044091027 @default.
- W3043664831 creator A5045986817 @default.
- W3043664831 creator A5071593779 @default.
- W3043664831 creator A5088801784 @default.
- W3043664831 date "2020-12-01" @default.
- W3043664831 modified "2023-09-26" @default.
- W3043664831 title "Latent state recognition by an enhanced hidden Markov model" @default.
- W3043664831 cites W1740350224 @default.
- W3043664831 cites W1882794413 @default.
- W3043664831 cites W1963787328 @default.
- W3043664831 cites W1967922250 @default.
- W3043664831 cites W1968668741 @default.
- W3043664831 cites W1977145924 @default.
- W3043664831 cites W1979575715 @default.
- W3043664831 cites W1985148971 @default.
- W3043664831 cites W1990134292 @default.
- W3043664831 cites W1999814123 @default.
- W3043664831 cites W2003626215 @default.
- W3043664831 cites W2003631406 @default.
- W3043664831 cites W2005432509 @default.
- W3043664831 cites W2009850097 @default.
- W3043664831 cites W2011384856 @default.
- W3043664831 cites W2017097671 @default.
- W3043664831 cites W2024083363 @default.
- W3043664831 cites W2028781966 @default.
- W3043664831 cites W2036203027 @default.
- W3043664831 cites W2045393750 @default.
- W3043664831 cites W2047726268 @default.
- W3043664831 cites W2051938115 @default.
- W3043664831 cites W2052441401 @default.
- W3043664831 cites W2056186894 @default.
- W3043664831 cites W2056636001 @default.
- W3043664831 cites W2062125287 @default.
- W3043664831 cites W2064218608 @default.
- W3043664831 cites W2074812030 @default.
- W3043664831 cites W2076618452 @default.
- W3043664831 cites W2086248701 @default.
- W3043664831 cites W2086699924 @default.
- W3043664831 cites W2105080323 @default.
- W3043664831 cites W2128778916 @default.
- W3043664831 cites W2133332006 @default.
- W3043664831 cites W2135046866 @default.
- W3043664831 cites W2142635246 @default.
- W3043664831 cites W2148628165 @default.
- W3043664831 cites W2149294361 @default.
- W3043664831 cites W2149425615 @default.
- W3043664831 cites W2155179256 @default.
- W3043664831 cites W2156612134 @default.
- W3043664831 cites W2168175751 @default.
- W3043664831 cites W2170429532 @default.
- W3043664831 cites W2170912900 @default.
- W3043664831 cites W2171033594 @default.
- W3043664831 cites W2229555156 @default.
- W3043664831 cites W2278394912 @default.
- W3043664831 cites W2519148344 @default.
- W3043664831 cites W2522258595 @default.
- W3043664831 cites W2568443937 @default.
- W3043664831 cites W2604842920 @default.
- W3043664831 cites W2626452658 @default.
- W3043664831 cites W2730167743 @default.
- W3043664831 cites W2804875651 @default.
- W3043664831 cites W2921218568 @default.
- W3043664831 cites W2962716677 @default.
- W3043664831 cites W2964145863 @default.
- W3043664831 cites W3005651887 @default.
- W3043664831 cites W3101762025 @default.
- W3043664831 cites W3122609836 @default.
- W3043664831 cites W3123925750 @default.
- W3043664831 cites W3124045061 @default.
- W3043664831 cites W3124503239 @default.
- W3043664831 cites W3124955081 @default.
- W3043664831 cites W3215186461 @default.
- W3043664831 cites W4233565910 @default.
- W3043664831 cites W4294541781 @default.
- W3043664831 doi "https://doi.org/10.1016/j.eswa.2020.113722" @default.
- W3043664831 hasPublicationYear "2020" @default.
- W3043664831 type Work @default.
- W3043664831 sameAs 3043664831 @default.
- W3043664831 citedByCount "4" @default.
- W3043664831 countsByYear W30436648312021 @default.
- W3043664831 countsByYear W30436648312022 @default.
- W3043664831 crossrefType "journal-article" @default.
- W3043664831 hasAuthorship W3043664831A5000492991 @default.
- W3043664831 hasAuthorship W3043664831A5029484872 @default.
- W3043664831 hasAuthorship W3043664831A5044091027 @default.
- W3043664831 hasAuthorship W3043664831A5045986817 @default.
- W3043664831 hasAuthorship W3043664831A5071593779 @default.
- W3043664831 hasAuthorship W3043664831A5088801784 @default.
- W3043664831 hasBestOaLocation W30436648312 @default.
- W3043664831 hasConcept C10138342 @default.
- W3043664831 hasConcept C119857082 @default.
- W3043664831 hasConcept C149782125 @default.
- W3043664831 hasConcept C153180895 @default.
- W3043664831 hasConcept C154945302 @default.