Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043713930> ?p ?o ?g. }
- W3043713930 endingPage "89" @default.
- W3043713930 startingPage "76" @default.
- W3043713930 abstract "Dimensionality reduction is one important technique to find out meaningful representations of data by discovering the underlying structures of data. As one widely applied method, by learning parts-based representations, nonnegative matrix factorization (NMF) has been widely researched and used to various application fields. Compared with the previous methods, this paper presents a novel semi-supervised NMF learning framework, called progressive transduction NMF (PTNMF), that learns a robustly discriminative representation by introducing a progressive transduction structure. Specifically, a progressive transduction based scheme is employed to gradually update the representations of unlabeled points according to the similarity between the labeled and unlabeled data points. This is helpful to improve the effectiveness of NMF, especially for the case that labeled data is inadequate. The efficiency of the proposed method is discussed both theoretically and empirically. Extensive experiments on several real-world data sets are listed, and the experimental results demonstrate that the proposed algorithm obtains better discriminant ability in comparison to the state-of-the-art methods." @default.
- W3043713930 created "2020-07-23" @default.
- W3043713930 creator A5002008253 @default.
- W3043713930 creator A5027620765 @default.
- W3043713930 creator A5031353058 @default.
- W3043713930 date "2020-11-01" @default.
- W3043713930 modified "2023-09-26" @default.
- W3043713930 title "Progressive transduction nonnegative matrix factorization for dimensionality reduction" @default.
- W3043713930 cites W1243961807 @default.
- W3043713930 cites W1753149633 @default.
- W3043713930 cites W1902027874 @default.
- W3043713930 cites W1968970305 @default.
- W3043713930 cites W1974451338 @default.
- W3043713930 cites W1999388400 @default.
- W3043713930 cites W2000774449 @default.
- W3043713930 cites W2001619934 @default.
- W3043713930 cites W2002469984 @default.
- W3043713930 cites W2006696725 @default.
- W3043713930 cites W2013029404 @default.
- W3043713930 cites W2024687090 @default.
- W3043713930 cites W2025080798 @default.
- W3043713930 cites W2043545458 @default.
- W3043713930 cites W2053186076 @default.
- W3043713930 cites W2070670538 @default.
- W3043713930 cites W2097308346 @default.
- W3043713930 cites W2104819583 @default.
- W3043713930 cites W2108119513 @default.
- W3043713930 cites W2108919995 @default.
- W3043713930 cites W2121647436 @default.
- W3043713930 cites W2126660483 @default.
- W3043713930 cites W2142584058 @default.
- W3043713930 cites W2142621404 @default.
- W3043713930 cites W2149292383 @default.
- W3043713930 cites W2165685007 @default.
- W3043713930 cites W2168103112 @default.
- W3043713930 cites W2170798597 @default.
- W3043713930 cites W2259771398 @default.
- W3043713930 cites W2394548493 @default.
- W3043713930 cites W2519936666 @default.
- W3043713930 cites W2553153235 @default.
- W3043713930 cites W2607323999 @default.
- W3043713930 cites W2615391827 @default.
- W3043713930 cites W2963630677 @default.
- W3043713930 doi "https://doi.org/10.1016/j.neucom.2020.06.115" @default.
- W3043713930 hasPublicationYear "2020" @default.
- W3043713930 type Work @default.
- W3043713930 sameAs 3043713930 @default.
- W3043713930 citedByCount "3" @default.
- W3043713930 countsByYear W30437139302022 @default.
- W3043713930 crossrefType "journal-article" @default.
- W3043713930 hasAuthorship W3043713930A5002008253 @default.
- W3043713930 hasAuthorship W3043713930A5027620765 @default.
- W3043713930 hasAuthorship W3043713930A5031353058 @default.
- W3043713930 hasConcept C103278499 @default.
- W3043713930 hasConcept C111030470 @default.
- W3043713930 hasConcept C11413529 @default.
- W3043713930 hasConcept C115961682 @default.
- W3043713930 hasConcept C121332964 @default.
- W3043713930 hasConcept C15152581 @default.
- W3043713930 hasConcept C151876577 @default.
- W3043713930 hasConcept C152671427 @default.
- W3043713930 hasConcept C153180895 @default.
- W3043713930 hasConcept C154945302 @default.
- W3043713930 hasConcept C158693339 @default.
- W3043713930 hasConcept C17744445 @default.
- W3043713930 hasConcept C185592680 @default.
- W3043713930 hasConcept C187834632 @default.
- W3043713930 hasConcept C199539241 @default.
- W3043713930 hasConcept C21080849 @default.
- W3043713930 hasConcept C2776359362 @default.
- W3043713930 hasConcept C33923547 @default.
- W3043713930 hasConcept C41008148 @default.
- W3043713930 hasConcept C42355184 @default.
- W3043713930 hasConcept C55493867 @default.
- W3043713930 hasConcept C62520636 @default.
- W3043713930 hasConcept C70518039 @default.
- W3043713930 hasConcept C78397625 @default.
- W3043713930 hasConcept C94625758 @default.
- W3043713930 hasConcept C97931131 @default.
- W3043713930 hasConceptScore W3043713930C103278499 @default.
- W3043713930 hasConceptScore W3043713930C111030470 @default.
- W3043713930 hasConceptScore W3043713930C11413529 @default.
- W3043713930 hasConceptScore W3043713930C115961682 @default.
- W3043713930 hasConceptScore W3043713930C121332964 @default.
- W3043713930 hasConceptScore W3043713930C15152581 @default.
- W3043713930 hasConceptScore W3043713930C151876577 @default.
- W3043713930 hasConceptScore W3043713930C152671427 @default.
- W3043713930 hasConceptScore W3043713930C153180895 @default.
- W3043713930 hasConceptScore W3043713930C154945302 @default.
- W3043713930 hasConceptScore W3043713930C158693339 @default.
- W3043713930 hasConceptScore W3043713930C17744445 @default.
- W3043713930 hasConceptScore W3043713930C185592680 @default.
- W3043713930 hasConceptScore W3043713930C187834632 @default.
- W3043713930 hasConceptScore W3043713930C199539241 @default.
- W3043713930 hasConceptScore W3043713930C21080849 @default.
- W3043713930 hasConceptScore W3043713930C2776359362 @default.
- W3043713930 hasConceptScore W3043713930C33923547 @default.
- W3043713930 hasConceptScore W3043713930C41008148 @default.