Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043787075> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3043787075 endingPage "1158" @default.
- W3043787075 startingPage "1158" @default.
- W3043787075 abstract "Chemical mechanical polishing (CMP) has become one of the most important process stages in the fabrication of advanced integrated circuits (IC). The CMP pattern effect strongly influences the planarization of the chip surface morphology after CMP, degrading the performance and the yield of the circuits. In this paper, we introduce a method to predict the post-CMP surface morphology with a convolutional neural network (CNN)-based CMP model. Then, CNN-based, density step height (DSH)-based, and common neural-network-based CMP models are built to compare the accuracy of the predictions. The test chips are designed and taped out and the predictions of the three models are compared with experimental results measured by an atomic force profiler (AFP) and scanning electron microscope (SEM). The results show that CNN-based CMP models have better accuracy by taking advantage of the CNN networks to extract features from images instead of the traditional equivalent pattern parameters. The effective planarization length (EPL) is introduced and defined to make better predictions with real-time CMP models and in dummy filling tasks. Experiments are designed to show a method to solve the EPL." @default.
- W3043787075 created "2020-07-23" @default.
- W3043787075 creator A5013112966 @default.
- W3043787075 creator A5048740840 @default.
- W3043787075 creator A5071314631 @default.
- W3043787075 date "2020-07-17" @default.
- W3043787075 modified "2023-10-18" @default.
- W3043787075 title "A Study on the Pattern Effects of Chemical Mechanical Planarization with CNN-Based Models" @default.
- W3043787075 cites W1484136265 @default.
- W3043787075 cites W2058438180 @default.
- W3043787075 cites W2069858738 @default.
- W3043787075 cites W2084529966 @default.
- W3043787075 cites W2126212041 @default.
- W3043787075 cites W2127767984 @default.
- W3043787075 cites W2147800946 @default.
- W3043787075 cites W2323339048 @default.
- W3043787075 cites W2406200750 @default.
- W3043787075 cites W2555891198 @default.
- W3043787075 cites W3010776687 @default.
- W3043787075 cites W2034539531 @default.
- W3043787075 doi "https://doi.org/10.3390/electronics9071158" @default.
- W3043787075 hasPublicationYear "2020" @default.
- W3043787075 type Work @default.
- W3043787075 sameAs 3043787075 @default.
- W3043787075 citedByCount "3" @default.
- W3043787075 countsByYear W30437870752021 @default.
- W3043787075 countsByYear W30437870752022 @default.
- W3043787075 countsByYear W30437870752023 @default.
- W3043787075 crossrefType "journal-article" @default.
- W3043787075 hasAuthorship W3043787075A5013112966 @default.
- W3043787075 hasAuthorship W3043787075A5048740840 @default.
- W3043787075 hasAuthorship W3043787075A5071314631 @default.
- W3043787075 hasBestOaLocation W30437870751 @default.
- W3043787075 hasConcept C111919701 @default.
- W3043787075 hasConcept C11413529 @default.
- W3043787075 hasConcept C119599485 @default.
- W3043787075 hasConcept C127413603 @default.
- W3043787075 hasConcept C134146338 @default.
- W3043787075 hasConcept C138113353 @default.
- W3043787075 hasConcept C154945302 @default.
- W3043787075 hasConcept C159985019 @default.
- W3043787075 hasConcept C165005293 @default.
- W3043787075 hasConcept C180088628 @default.
- W3043787075 hasConcept C192562407 @default.
- W3043787075 hasConcept C24326235 @default.
- W3043787075 hasConcept C26771246 @default.
- W3043787075 hasConcept C41008148 @default.
- W3043787075 hasConcept C49040817 @default.
- W3043787075 hasConcept C530198007 @default.
- W3043787075 hasConcept C76155785 @default.
- W3043787075 hasConcept C81363708 @default.
- W3043787075 hasConcept C98045186 @default.
- W3043787075 hasConceptScore W3043787075C111919701 @default.
- W3043787075 hasConceptScore W3043787075C11413529 @default.
- W3043787075 hasConceptScore W3043787075C119599485 @default.
- W3043787075 hasConceptScore W3043787075C127413603 @default.
- W3043787075 hasConceptScore W3043787075C134146338 @default.
- W3043787075 hasConceptScore W3043787075C138113353 @default.
- W3043787075 hasConceptScore W3043787075C154945302 @default.
- W3043787075 hasConceptScore W3043787075C159985019 @default.
- W3043787075 hasConceptScore W3043787075C165005293 @default.
- W3043787075 hasConceptScore W3043787075C180088628 @default.
- W3043787075 hasConceptScore W3043787075C192562407 @default.
- W3043787075 hasConceptScore W3043787075C24326235 @default.
- W3043787075 hasConceptScore W3043787075C26771246 @default.
- W3043787075 hasConceptScore W3043787075C41008148 @default.
- W3043787075 hasConceptScore W3043787075C49040817 @default.
- W3043787075 hasConceptScore W3043787075C530198007 @default.
- W3043787075 hasConceptScore W3043787075C76155785 @default.
- W3043787075 hasConceptScore W3043787075C81363708 @default.
- W3043787075 hasConceptScore W3043787075C98045186 @default.
- W3043787075 hasFunder F4320335960 @default.
- W3043787075 hasIssue "7" @default.
- W3043787075 hasLocation W30437870751 @default.
- W3043787075 hasOpenAccess W3043787075 @default.
- W3043787075 hasPrimaryLocation W30437870751 @default.
- W3043787075 hasRelatedWork W2081290327 @default.
- W3043787075 hasRelatedWork W2106803670 @default.
- W3043787075 hasRelatedWork W2111947267 @default.
- W3043787075 hasRelatedWork W2121949130 @default.
- W3043787075 hasRelatedWork W2135369720 @default.
- W3043787075 hasRelatedWork W2325709469 @default.
- W3043787075 hasRelatedWork W2359838860 @default.
- W3043787075 hasRelatedWork W2360092082 @default.
- W3043787075 hasRelatedWork W2498038632 @default.
- W3043787075 hasRelatedWork W2951620411 @default.
- W3043787075 hasVolume "9" @default.
- W3043787075 isParatext "false" @default.
- W3043787075 isRetracted "false" @default.
- W3043787075 magId "3043787075" @default.
- W3043787075 workType "article" @default.