Matches in SemOpenAlex for { <https://semopenalex.org/work/W3043880356> ?p ?o ?g. }
- W3043880356 abstract "Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem with practical implications in medical and biological imaging, manufacturing, automation, and environmental and food security. Regularizing priors are necessary to reduce artifacts by improving the condition of such problems. Recently, it was shown that one effective way to learn the priors for strongly scattering yet highly structured 3D objects, e.g. layered and Manhattan, is by a static neural network [Goy et al, Proc. Natl. Acad. Sci. 116, 19848-19856 (2019)]. Here, we present a radically different approach where the collection of raw images from multiple angles is viewed analogously to a dynamical system driven by the object-dependent forward scattering operator. The sequence index in angle of illumination plays the role of discrete time in the dynamical system analogy. Thus, the imaging problem turns into a problem of nonlinear system identification, which also suggests dynamical learning as better fit to regularize the reconstructions. We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the fundamental building block. Through comprehensive comparison of several quantitative metrics, we show that the dynamic method improves upon previous static approaches with fewer artifacts and better overall reconstruction fidelity." @default.
- W3043880356 created "2020-07-29" @default.
- W3043880356 creator A5010815339 @default.
- W3043880356 creator A5015150286 @default.
- W3043880356 creator A5034049110 @default.
- W3043880356 date "2020-07-21" @default.
- W3043880356 modified "2023-09-24" @default.
- W3043880356 title "Limited-angle tomographic reconstruction of dense layered objects by dynamical machine learning" @default.
- W3043880356 cites W12277440 @default.
- W3043880356 cites W1485009520 @default.
- W3043880356 cites W1500041086 @default.
- W3043880356 cites W1514248469 @default.
- W3043880356 cites W1522301498 @default.
- W3043880356 cites W1585160083 @default.
- W3043880356 cites W1665214252 @default.
- W3043880356 cites W1806897574 @default.
- W3043880356 cites W1901129140 @default.
- W3043880356 cites W1976167032 @default.
- W3043880356 cites W1977128668 @default.
- W3043880356 cites W1984361647 @default.
- W3043880356 cites W1987043627 @default.
- W3043880356 cites W1992658974 @default.
- W3043880356 cites W1999291495 @default.
- W3043880356 cites W2002832520 @default.
- W3043880356 cites W2005089986 @default.
- W3043880356 cites W2006605937 @default.
- W3043880356 cites W2013564226 @default.
- W3043880356 cites W2016589492 @default.
- W3043880356 cites W2022064373 @default.
- W3043880356 cites W2022147895 @default.
- W3043880356 cites W2037024114 @default.
- W3043880356 cites W2046967640 @default.
- W3043880356 cites W2064675550 @default.
- W3043880356 cites W2089441731 @default.
- W3043880356 cites W2100556411 @default.
- W3043880356 cites W2104844366 @default.
- W3043880356 cites W2115706991 @default.
- W3043880356 cites W2118103795 @default.
- W3043880356 cites W2126209750 @default.
- W3043880356 cites W2133665775 @default.
- W3043880356 cites W2142224912 @default.
- W3043880356 cites W2143368686 @default.
- W3043880356 cites W2145203087 @default.
- W3043880356 cites W2152537098 @default.
- W3043880356 cites W2156387975 @default.
- W3043880356 cites W2157331557 @default.
- W3043880356 cites W2157812230 @default.
- W3043880356 cites W2157822312 @default.
- W3043880356 cites W2161279352 @default.
- W3043880356 cites W2161692191 @default.
- W3043880356 cites W2171865010 @default.
- W3043880356 cites W2194775991 @default.
- W3043880356 cites W2293327468 @default.
- W3043880356 cites W2342277278 @default.
- W3043880356 cites W2540601857 @default.
- W3043880356 cites W2574952845 @default.
- W3043880356 cites W2580662672 @default.
- W3043880356 cites W2580840020 @default.
- W3043880356 cites W2593966629 @default.
- W3043880356 cites W2612688942 @default.
- W3043880356 cites W2621182918 @default.
- W3043880356 cites W2626045175 @default.
- W3043880356 cites W2627092829 @default.
- W3043880356 cites W2673901561 @default.
- W3043880356 cites W2735418187 @default.
- W3043880356 cites W2768426221 @default.
- W3043880356 cites W2768975186 @default.
- W3043880356 cites W2770205545 @default.
- W3043880356 cites W2796873224 @default.
- W3043880356 cites W2810363749 @default.
- W3043880356 cites W2889266398 @default.
- W3043880356 cites W2890474520 @default.
- W3043880356 cites W2908080566 @default.
- W3043880356 cites W2939503538 @default.
- W3043880356 cites W2950855294 @default.
- W3043880356 cites W2963698847 @default.
- W3043880356 cites W2964231206 @default.
- W3043880356 cites W2964308564 @default.
- W3043880356 cites W2972343969 @default.
- W3043880356 cites W2972741102 @default.
- W3043880356 cites W2974626015 @default.
- W3043880356 cites W3003820456 @default.
- W3043880356 cites W3035483468 @default.
- W3043880356 cites W3102677480 @default.
- W3043880356 cites W3103056925 @default.
- W3043880356 cites W3106512002 @default.
- W3043880356 cites W855255571 @default.
- W3043880356 doi "https://doi.org/10.48550/arxiv.2007.10734" @default.
- W3043880356 hasPublicationYear "2020" @default.
- W3043880356 type Work @default.
- W3043880356 sameAs 3043880356 @default.
- W3043880356 citedByCount "1" @default.
- W3043880356 countsByYear W30438803562021 @default.
- W3043880356 crossrefType "posted-content" @default.
- W3043880356 hasAuthorship W3043880356A5010815339 @default.
- W3043880356 hasAuthorship W3043880356A5015150286 @default.
- W3043880356 hasAuthorship W3043880356A5034049110 @default.
- W3043880356 hasBestOaLocation W30438803561 @default.
- W3043880356 hasConcept C104317684 @default.
- W3043880356 hasConcept C107673813 @default.