Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044016175> ?p ?o ?g. }
- W3044016175 endingPage "110435" @default.
- W3044016175 startingPage "110435" @default.
- W3044016175 abstract "There is a lack of research on predictors of criminal recidivism of offender patients diagnosed with schizophrenia. 653 potential predictor variables were anlyzed in a set of 344 offender patients with a diagnosis of schizophrenia (209 reconvicted) using machine learning algorithms. As a novel methodological approach, null hypothesis significance testing (NHST), backward selection, logistic regression, trees, support vector machines (SVM), and naive bayes were used for preselecting variables. Subsequently the variables identified as most influential were used for machine learning algorithm building and evaluation. The two final models (with/without imputation) predicted criminal recidivism with an accuracy of 81.7 % and 70.6 % and a predictive power (area under the curve, AUC) of 0.89 and 0.76 based on the following predictors: prescription of amisulpride prior to reoffending, suspended sentencing to imprisonment, legal complaints filed by relatives/therapists/public authorities, recent legal issues, number of offences leading to forensic treatment, anxiety upon discharge, being single, violence toward care team and constant breaking of rules during treatment, illegal opioid use, middle east as place of birth, and time span since the last psychiatric inpatient treatment. Results provide new insight on possible factors influencing persistent offending in a specific subgroup of patients with a schizophrenic spectrum disorder." @default.
- W3044016175 created "2020-07-29" @default.
- W3044016175 creator A5035485656 @default.
- W3044016175 creator A5044796862 @default.
- W3044016175 creator A5044869498 @default.
- W3044016175 date "2020-10-01" @default.
- W3044016175 modified "2023-09-26" @default.
- W3044016175 title "Identifying influential factors distinguishing recidivists among offender patients with a diagnosis of schizophrenia via machine learning algorithms" @default.
- W3044016175 cites W1905782493 @default.
- W3044016175 cites W1963527901 @default.
- W3044016175 cites W1965973862 @default.
- W3044016175 cites W1972978214 @default.
- W3044016175 cites W1976976697 @default.
- W3044016175 cites W1982011806 @default.
- W3044016175 cites W2009832071 @default.
- W3044016175 cites W2011129197 @default.
- W3044016175 cites W2020642999 @default.
- W3044016175 cites W2022685753 @default.
- W3044016175 cites W2031917113 @default.
- W3044016175 cites W2033184625 @default.
- W3044016175 cites W2054945103 @default.
- W3044016175 cites W2057335587 @default.
- W3044016175 cites W2058350501 @default.
- W3044016175 cites W2068560144 @default.
- W3044016175 cites W2069620050 @default.
- W3044016175 cites W2083140520 @default.
- W3044016175 cites W2100065353 @default.
- W3044016175 cites W2108462371 @default.
- W3044016175 cites W2113559481 @default.
- W3044016175 cites W2125653585 @default.
- W3044016175 cites W2136290559 @default.
- W3044016175 cites W2136588713 @default.
- W3044016175 cites W2140606211 @default.
- W3044016175 cites W2142225512 @default.
- W3044016175 cites W2145919552 @default.
- W3044016175 cites W2146524946 @default.
- W3044016175 cites W2164207356 @default.
- W3044016175 cites W2165988750 @default.
- W3044016175 cites W2166561686 @default.
- W3044016175 cites W2167676456 @default.
- W3044016175 cites W2169992676 @default.
- W3044016175 cites W2277329769 @default.
- W3044016175 cites W2284749039 @default.
- W3044016175 cites W2290195878 @default.
- W3044016175 cites W2322368019 @default.
- W3044016175 cites W2599813880 @default.
- W3044016175 cites W2634755931 @default.
- W3044016175 cites W2738873788 @default.
- W3044016175 cites W2787427645 @default.
- W3044016175 cites W2792084888 @default.
- W3044016175 cites W2808486778 @default.
- W3044016175 cites W2913459026 @default.
- W3044016175 cites W2945495213 @default.
- W3044016175 cites W3022471525 @default.
- W3044016175 cites W596623478 @default.
- W3044016175 doi "https://doi.org/10.1016/j.forsciint.2020.110435" @default.
- W3044016175 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32784039" @default.
- W3044016175 hasPublicationYear "2020" @default.
- W3044016175 type Work @default.
- W3044016175 sameAs 3044016175 @default.
- W3044016175 citedByCount "13" @default.
- W3044016175 countsByYear W30440161752020 @default.
- W3044016175 countsByYear W30440161752021 @default.
- W3044016175 countsByYear W30440161752022 @default.
- W3044016175 countsByYear W30440161752023 @default.
- W3044016175 crossrefType "journal-article" @default.
- W3044016175 hasAuthorship W3044016175A5035485656 @default.
- W3044016175 hasAuthorship W3044016175A5044796862 @default.
- W3044016175 hasAuthorship W3044016175A5044869498 @default.
- W3044016175 hasConcept C118552586 @default.
- W3044016175 hasConcept C119857082 @default.
- W3044016175 hasConcept C151956035 @default.
- W3044016175 hasConcept C154945302 @default.
- W3044016175 hasConcept C15744967 @default.
- W3044016175 hasConcept C2776090404 @default.
- W3044016175 hasConcept C2776412080 @default.
- W3044016175 hasConcept C2778999636 @default.
- W3044016175 hasConcept C2779727114 @default.
- W3044016175 hasConcept C2780494398 @default.
- W3044016175 hasConcept C2781204524 @default.
- W3044016175 hasConcept C41008148 @default.
- W3044016175 hasConcept C70410870 @default.
- W3044016175 hasConceptScore W3044016175C118552586 @default.
- W3044016175 hasConceptScore W3044016175C119857082 @default.
- W3044016175 hasConceptScore W3044016175C151956035 @default.
- W3044016175 hasConceptScore W3044016175C154945302 @default.
- W3044016175 hasConceptScore W3044016175C15744967 @default.
- W3044016175 hasConceptScore W3044016175C2776090404 @default.
- W3044016175 hasConceptScore W3044016175C2776412080 @default.
- W3044016175 hasConceptScore W3044016175C2778999636 @default.
- W3044016175 hasConceptScore W3044016175C2779727114 @default.
- W3044016175 hasConceptScore W3044016175C2780494398 @default.
- W3044016175 hasConceptScore W3044016175C2781204524 @default.
- W3044016175 hasConceptScore W3044016175C41008148 @default.
- W3044016175 hasConceptScore W3044016175C70410870 @default.
- W3044016175 hasLocation W30440161751 @default.
- W3044016175 hasOpenAccess W3044016175 @default.
- W3044016175 hasPrimaryLocation W30440161751 @default.