Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044071265> ?p ?o ?g. }
- W3044071265 endingPage "817" @default.
- W3044071265 startingPage "817" @default.
- W3044071265 abstract "Automatic identification of human interaction is a challenging task especially in dynamic environments with cluttered backgrounds from video sequences. Advancements in computer vision sensor technologies provide powerful effects in human interaction recognition (HIR) during routine daily life. In this paper, we propose a novel features extraction method which incorporates robust entropy optimization and an efficient Maximum Entropy Markov Model (MEMM) for HIR via multiple vision sensors. The main objectives of proposed methodology are: (1) to propose a hybrid of four novel features—i.e., spatio-temporal features, energy-based features, shape based angular and geometric features—and a motion-orthogonal histogram of oriented gradient (MO-HOG); (2) to encode hybrid feature descriptors using a codebook, a Gaussian mixture model (GMM) and fisher encoding; (3) to optimize the encoded feature using a cross entropy optimization function; (4) to apply a MEMM classification algorithm to examine empirical expectations and highest entropy, which measure pattern variances to achieve outperformed HIR accuracy results. Our system is tested over three well-known datasets: SBU Kinect interaction; UoL 3D social activity; UT-interaction datasets. Through wide experimentations, the proposed features extraction algorithm, along with cross entropy optimization, has achieved the average accuracy rate of 91.25% with SBU, 90.4% with UoL and 87.4% with UT-Interaction datasets. The proposed HIR system will be applicable to a wide variety of man–machine interfaces, such as public-place surveillance, future medical applications, virtual reality, fitness exercises and 3D interactive gaming." @default.
- W3044071265 created "2020-07-29" @default.
- W3044071265 creator A5020142834 @default.
- W3044071265 creator A5057992025 @default.
- W3044071265 creator A5072951124 @default.
- W3044071265 date "2020-07-26" @default.
- W3044071265 modified "2023-10-05" @default.
- W3044071265 title "Automatic Recognition of Human Interaction via Hybrid Descriptors and Maximum Entropy Markov Model Using Depth Sensors" @default.
- W3044071265 cites W1790649466 @default.
- W3044071265 cites W1969069964 @default.
- W3044071265 cites W1969117674 @default.
- W3044071265 cites W1984549038 @default.
- W3044071265 cites W2012557818 @default.
- W3044071265 cites W2019080172 @default.
- W3044071265 cites W2031751002 @default.
- W3044071265 cites W2033719708 @default.
- W3044071265 cites W2043723285 @default.
- W3044071265 cites W2056339039 @default.
- W3044071265 cites W2058256495 @default.
- W3044071265 cites W2062950526 @default.
- W3044071265 cites W2066338981 @default.
- W3044071265 cites W2084760903 @default.
- W3044071265 cites W2090766960 @default.
- W3044071265 cites W2092690094 @default.
- W3044071265 cites W2207211395 @default.
- W3044071265 cites W2230000137 @default.
- W3044071265 cites W2274499208 @default.
- W3044071265 cites W2276233483 @default.
- W3044071265 cites W2277576098 @default.
- W3044071265 cites W2290998037 @default.
- W3044071265 cites W2298446657 @default.
- W3044071265 cites W2321254964 @default.
- W3044071265 cites W2412686074 @default.
- W3044071265 cites W2500816139 @default.
- W3044071265 cites W2503479123 @default.
- W3044071265 cites W2506886870 @default.
- W3044071265 cites W2515683778 @default.
- W3044071265 cites W2529005704 @default.
- W3044071265 cites W2529431648 @default.
- W3044071265 cites W2533503513 @default.
- W3044071265 cites W2558720333 @default.
- W3044071265 cites W2569064097 @default.
- W3044071265 cites W2578525951 @default.
- W3044071265 cites W2583490385 @default.
- W3044071265 cites W2616870006 @default.
- W3044071265 cites W2622398900 @default.
- W3044071265 cites W2733001972 @default.
- W3044071265 cites W2736707111 @default.
- W3044071265 cites W2753588919 @default.
- W3044071265 cites W2775870354 @default.
- W3044071265 cites W2794141136 @default.
- W3044071265 cites W2796657057 @default.
- W3044071265 cites W2806514957 @default.
- W3044071265 cites W2901073115 @default.
- W3044071265 cites W2904474953 @default.
- W3044071265 cites W2909218472 @default.
- W3044071265 cites W2909400870 @default.
- W3044071265 cites W2910258641 @default.
- W3044071265 cites W2911378276 @default.
- W3044071265 cites W2911676633 @default.
- W3044071265 cites W2921586637 @default.
- W3044071265 cites W2921899828 @default.
- W3044071265 cites W2922207171 @default.
- W3044071265 cites W2924770796 @default.
- W3044071265 cites W2925158564 @default.
- W3044071265 cites W2931258175 @default.
- W3044071265 cites W2932098188 @default.
- W3044071265 cites W2938458899 @default.
- W3044071265 cites W2939204356 @default.
- W3044071265 cites W2941719259 @default.
- W3044071265 cites W2942810189 @default.
- W3044071265 cites W2946490545 @default.
- W3044071265 cites W2957946874 @default.
- W3044071265 cites W2962728655 @default.
- W3044071265 cites W2967946308 @default.
- W3044071265 cites W2969398771 @default.
- W3044071265 cites W2977524124 @default.
- W3044071265 cites W2977695604 @default.
- W3044071265 cites W2981640404 @default.
- W3044071265 cites W2989064674 @default.
- W3044071265 cites W2995110559 @default.
- W3044071265 cites W2995628968 @default.
- W3044071265 cites W3001526121 @default.
- W3044071265 cites W3005723746 @default.
- W3044071265 cites W3013339330 @default.
- W3044071265 cites W3013713530 @default.
- W3044071265 cites W3013964275 @default.
- W3044071265 cites W3015663082 @default.
- W3044071265 cites W3015931671 @default.
- W3044071265 cites W3016117922 @default.
- W3044071265 cites W3027425326 @default.
- W3044071265 cites W3035480680 @default.
- W3044071265 cites W3042130258 @default.
- W3044071265 cites W4235386266 @default.
- W3044071265 cites W4238400024 @default.
- W3044071265 cites W71484573 @default.
- W3044071265 cites W99952337 @default.
- W3044071265 doi "https://doi.org/10.3390/e22080817" @default.