Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044143324> ?p ?o ?g. }
- W3044143324 endingPage "104548" @default.
- W3044143324 startingPage "104548" @default.
- W3044143324 abstract "Accurate pore-pressure prediction is of essential importance to hydrocarbon exploration and development. A multivariate prediction model of multiple petrophysical data is required to adequately reflect variations in pore pressure. However, the parametric multivariate models with assumptions on lithology, predominantly sand or shale, are theoretically inaccurate for mixed lithologies and require a tedious calibration process. Here, we propose a new method of utilizing machine learning (ML) techniques for pore-pressure prediction with a nonparametric multivariate model of petrophysical properties (sonic velocity, porosity, and shale volume). The training dataset for the ML models is constructed using petrophysical properties extracted from well log data and theoretical effective stress in the normally compacted interval. Bowers’ unloading relation is invoked herein to account for abnormal pressure generated by unloading. Four ML algorithms, including the multilayer perceptron neural network, support vector machine, random forest, and gradient boosting machine, are applied to well log data from a set of offshore exploration wells. The results suggest that the proposed method using ML makes pore-pressure predictions in good agreement with pore-pressure measurement, and random forest outperforms the other ML algorithms in terms of goodness-of-fit, generalizability, and prediction accuracy. Compared with methods based on parametric models, the proposed method based on ML produces more accurate pore-pressure prediction and better capture the onset of overpressure." @default.
- W3044143324 created "2020-07-29" @default.
- W3044143324 creator A5004506107 @default.
- W3044143324 creator A5013493122 @default.
- W3044143324 creator A5034441026 @default.
- W3044143324 date "2020-10-01" @default.
- W3044143324 modified "2023-09-30" @default.
- W3044143324 title "A machine learning methodology for multivariate pore-pressure prediction" @default.
- W3044143324 cites W1927304893 @default.
- W3044143324 cites W1977649496 @default.
- W3044143324 cites W1978878626 @default.
- W3044143324 cites W1984627058 @default.
- W3044143324 cites W1988787358 @default.
- W3044143324 cites W1993192109 @default.
- W3044143324 cites W1995714504 @default.
- W3044143324 cites W1997535158 @default.
- W3044143324 cites W2020607207 @default.
- W3044143324 cites W2027442956 @default.
- W3044143324 cites W2035445364 @default.
- W3044143324 cites W2036067500 @default.
- W3044143324 cites W2052700058 @default.
- W3044143324 cites W2056132907 @default.
- W3044143324 cites W2058257812 @default.
- W3044143324 cites W2080189009 @default.
- W3044143324 cites W2081620141 @default.
- W3044143324 cites W2083775526 @default.
- W3044143324 cites W2083826621 @default.
- W3044143324 cites W2104992059 @default.
- W3044143324 cites W2116952411 @default.
- W3044143324 cites W2172044679 @default.
- W3044143324 cites W2218047931 @default.
- W3044143324 cites W2395047926 @default.
- W3044143324 cites W2470762765 @default.
- W3044143324 cites W2593655889 @default.
- W3044143324 cites W2766259095 @default.
- W3044143324 cites W2790227774 @default.
- W3044143324 cites W2801691371 @default.
- W3044143324 cites W2911964244 @default.
- W3044143324 cites W2914545661 @default.
- W3044143324 cites W2927092743 @default.
- W3044143324 cites W2988237773 @default.
- W3044143324 cites W3012833929 @default.
- W3044143324 cites W3208579319 @default.
- W3044143324 cites W4245993775 @default.
- W3044143324 doi "https://doi.org/10.1016/j.cageo.2020.104548" @default.
- W3044143324 hasPublicationYear "2020" @default.
- W3044143324 type Work @default.
- W3044143324 sameAs 3044143324 @default.
- W3044143324 citedByCount "31" @default.
- W3044143324 countsByYear W30441433242021 @default.
- W3044143324 countsByYear W30441433242022 @default.
- W3044143324 countsByYear W30441433242023 @default.
- W3044143324 crossrefType "journal-article" @default.
- W3044143324 hasAuthorship W3044143324A5004506107 @default.
- W3044143324 hasAuthorship W3044143324A5013493122 @default.
- W3044143324 hasAuthorship W3044143324A5034441026 @default.
- W3044143324 hasConcept C102579867 @default.
- W3044143324 hasConcept C105795698 @default.
- W3044143324 hasConcept C117251300 @default.
- W3044143324 hasConcept C119857082 @default.
- W3044143324 hasConcept C12267149 @default.
- W3044143324 hasConcept C127313418 @default.
- W3044143324 hasConcept C154945302 @default.
- W3044143324 hasConcept C161584116 @default.
- W3044143324 hasConcept C165838908 @default.
- W3044143324 hasConcept C169258074 @default.
- W3044143324 hasConcept C187320778 @default.
- W3044143324 hasConcept C33923547 @default.
- W3044143324 hasConcept C35817400 @default.
- W3044143324 hasConcept C41008148 @default.
- W3044143324 hasConcept C46293882 @default.
- W3044143324 hasConcept C50644808 @default.
- W3044143324 hasConcept C6648577 @default.
- W3044143324 hasConcept C78762247 @default.
- W3044143324 hasConceptScore W3044143324C102579867 @default.
- W3044143324 hasConceptScore W3044143324C105795698 @default.
- W3044143324 hasConceptScore W3044143324C117251300 @default.
- W3044143324 hasConceptScore W3044143324C119857082 @default.
- W3044143324 hasConceptScore W3044143324C12267149 @default.
- W3044143324 hasConceptScore W3044143324C127313418 @default.
- W3044143324 hasConceptScore W3044143324C154945302 @default.
- W3044143324 hasConceptScore W3044143324C161584116 @default.
- W3044143324 hasConceptScore W3044143324C165838908 @default.
- W3044143324 hasConceptScore W3044143324C169258074 @default.
- W3044143324 hasConceptScore W3044143324C187320778 @default.
- W3044143324 hasConceptScore W3044143324C33923547 @default.
- W3044143324 hasConceptScore W3044143324C35817400 @default.
- W3044143324 hasConceptScore W3044143324C41008148 @default.
- W3044143324 hasConceptScore W3044143324C46293882 @default.
- W3044143324 hasConceptScore W3044143324C50644808 @default.
- W3044143324 hasConceptScore W3044143324C6648577 @default.
- W3044143324 hasConceptScore W3044143324C78762247 @default.
- W3044143324 hasFunder F4320321001 @default.
- W3044143324 hasLocation W30441433241 @default.
- W3044143324 hasOpenAccess W3044143324 @default.
- W3044143324 hasPrimaryLocation W30441433241 @default.
- W3044143324 hasRelatedWork W2247603160 @default.
- W3044143324 hasRelatedWork W2937631562 @default.