Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044179938> ?p ?o ?g. }
- W3044179938 endingPage "4078" @default.
- W3044179938 startingPage "4078" @default.
- W3044179938 abstract "The field of biometrics is a pattern recognition problem, where the individual traits are coded, registered, and compared with other database records. Due to the difficulties in reproducing Electrocardiograms (ECG), their usage has been emerging in the biometric field for more secure applications. Inspired by the high performance shown by Deep Neural Networks (DNN) and to mitigate the intra-variability challenges displayed by the ECG of each individual, this work proposes two architectures to improve current results in both identification (finding the registered person from a sample) and authentication (prove that the person is whom it claims) processes: Temporal Convolutional Neural Network (TCNN) and Recurrent Neural Network (RNN). Each architecture produces a similarity score, based on the prediction error of the former and the logits given by the last, and fed to the same classifier, the Relative Score Threshold Classifier (RSTC).The robustness and applicability of these architectures were trained and tested on public databases used by literature in this context: Fantasia, MIT-BIH, and CYBHi databases. Results show that overall the TCNN outperforms the RNN achieving almost 100%, 96%, and 90% accuracy, respectively, for identification and 0.0%, 0.1%, and 2.2% equal error rate (EER) for authentication processes. When comparing to previous work, both architectures reached results beyond the state-of-the-art. Nevertheless, the improvement of these techniques, such as enriching training with extra varied data and transfer learning, may provide more robust systems with a reduced time required for validation." @default.
- W3044179938 created "2020-07-29" @default.
- W3044179938 creator A5020624628 @default.
- W3044179938 creator A5029045681 @default.
- W3044179938 creator A5038205194 @default.
- W3044179938 creator A5055820769 @default.
- W3044179938 creator A5088309130 @default.
- W3044179938 date "2020-07-22" @default.
- W3044179938 modified "2023-10-12" @default.
- W3044179938 title "ECG Biometrics Using Deep Learning and Relative Score Threshold Classification" @default.
- W3044179938 cites W1891987630 @default.
- W3044179938 cites W1968576535 @default.
- W3044179938 cites W1980497570 @default.
- W3044179938 cites W1986077389 @default.
- W3044179938 cites W1988183757 @default.
- W3044179938 cites W1988575427 @default.
- W3044179938 cites W1996005698 @default.
- W3044179938 cites W2002422013 @default.
- W3044179938 cites W2038089898 @default.
- W3044179938 cites W2063358975 @default.
- W3044179938 cites W2071990626 @default.
- W3044179938 cites W2080547538 @default.
- W3044179938 cites W2095409369 @default.
- W3044179938 cites W2152702278 @default.
- W3044179938 cites W2155234873 @default.
- W3044179938 cites W2160845636 @default.
- W3044179938 cites W2162800060 @default.
- W3044179938 cites W2165956633 @default.
- W3044179938 cites W239677356 @default.
- W3044179938 cites W2521641300 @default.
- W3044179938 cites W2588445447 @default.
- W3044179938 cites W2588729078 @default.
- W3044179938 cites W2620050178 @default.
- W3044179938 cites W2625736062 @default.
- W3044179938 cites W2757960269 @default.
- W3044179938 cites W2779797561 @default.
- W3044179938 cites W2794557162 @default.
- W3044179938 cites W2972178360 @default.
- W3044179938 cites W3040715269 @default.
- W3044179938 cites W4245920268 @default.
- W3044179938 doi "https://doi.org/10.3390/s20154078" @default.
- W3044179938 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7435887" @default.
- W3044179938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32707861" @default.
- W3044179938 hasPublicationYear "2020" @default.
- W3044179938 type Work @default.
- W3044179938 sameAs 3044179938 @default.
- W3044179938 citedByCount "23" @default.
- W3044179938 countsByYear W30441799382021 @default.
- W3044179938 countsByYear W30441799382022 @default.
- W3044179938 countsByYear W30441799382023 @default.
- W3044179938 crossrefType "journal-article" @default.
- W3044179938 hasAuthorship W3044179938A5020624628 @default.
- W3044179938 hasAuthorship W3044179938A5029045681 @default.
- W3044179938 hasAuthorship W3044179938A5038205194 @default.
- W3044179938 hasAuthorship W3044179938A5055820769 @default.
- W3044179938 hasAuthorship W3044179938A5088309130 @default.
- W3044179938 hasBestOaLocation W30441799381 @default.
- W3044179938 hasConcept C104317684 @default.
- W3044179938 hasConcept C108583219 @default.
- W3044179938 hasConcept C119857082 @default.
- W3044179938 hasConcept C153180895 @default.
- W3044179938 hasConcept C154945302 @default.
- W3044179938 hasConcept C184297639 @default.
- W3044179938 hasConcept C185592680 @default.
- W3044179938 hasConcept C40969351 @default.
- W3044179938 hasConcept C41008148 @default.
- W3044179938 hasConcept C50644808 @default.
- W3044179938 hasConcept C55493867 @default.
- W3044179938 hasConcept C63479239 @default.
- W3044179938 hasConcept C81363708 @default.
- W3044179938 hasConcept C95623464 @default.
- W3044179938 hasConceptScore W3044179938C104317684 @default.
- W3044179938 hasConceptScore W3044179938C108583219 @default.
- W3044179938 hasConceptScore W3044179938C119857082 @default.
- W3044179938 hasConceptScore W3044179938C153180895 @default.
- W3044179938 hasConceptScore W3044179938C154945302 @default.
- W3044179938 hasConceptScore W3044179938C184297639 @default.
- W3044179938 hasConceptScore W3044179938C185592680 @default.
- W3044179938 hasConceptScore W3044179938C40969351 @default.
- W3044179938 hasConceptScore W3044179938C41008148 @default.
- W3044179938 hasConceptScore W3044179938C50644808 @default.
- W3044179938 hasConceptScore W3044179938C55493867 @default.
- W3044179938 hasConceptScore W3044179938C63479239 @default.
- W3044179938 hasConceptScore W3044179938C81363708 @default.
- W3044179938 hasConceptScore W3044179938C95623464 @default.
- W3044179938 hasIssue "15" @default.
- W3044179938 hasLocation W30441799381 @default.
- W3044179938 hasLocation W30441799382 @default.
- W3044179938 hasLocation W30441799383 @default.
- W3044179938 hasLocation W30441799384 @default.
- W3044179938 hasOpenAccess W3044179938 @default.
- W3044179938 hasPrimaryLocation W30441799381 @default.
- W3044179938 hasRelatedWork W2731899572 @default.
- W3044179938 hasRelatedWork W2999805992 @default.
- W3044179938 hasRelatedWork W3116150086 @default.
- W3044179938 hasRelatedWork W3133861977 @default.
- W3044179938 hasRelatedWork W4200173597 @default.
- W3044179938 hasRelatedWork W4223943233 @default.