Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044200916> ?p ?o ?g. }
- W3044200916 abstract "Abstract This study sought to produce an accurate multi-hazard risk map for a mountainous region of Iran. The study area is in southwestern Iran. The region has experienced numerous extreme natural events in recent decades. This study models the probabilities of snow avalanches, landslides, wildfires, land subsidence, and floods using machine learning models that include support vector machine (SVM), boosted regression tree (BRT), and generalized linear model (GLM). Climatic, topographic, geological, social, and morphological factors were the main input variables used. The data were obtained from several sources. The accuracies of GLM, SVM, and functional discriminant analysis (FDA) models indicate that SVM is the most accurate for predicting landslides, land subsidence, and flood hazards in the study area. GLM is the best algorithm for wildfire mapping, and FDA is the most accurate model for predicting snow avalanche risk. The values of AUC (area under curve) for all five hazards using the best models are greater than 0.8, demonstrating that the model’s predictive abilities are acceptable. A machine learning approach can prove to be very useful tool for hazard management and disaster mitigation, particularly for multi-hazard modeling. The predictive maps produce valuable baselines for risk management in the study area, providing evidence to manage future human interaction with hazards." @default.
- W3044200916 created "2020-07-29" @default.
- W3044200916 creator A5006705342 @default.
- W3044200916 creator A5031747582 @default.
- W3044200916 creator A5048549263 @default.
- W3044200916 creator A5062128630 @default.
- W3044200916 creator A5075958461 @default.
- W3044200916 creator A5091442115 @default.
- W3044200916 date "2020-07-22" @default.
- W3044200916 modified "2023-10-17" @default.
- W3044200916 title "A machine learning framework for multi-hazards modeling and mapping in a mountainous area" @default.
- W3044200916 cites W1192997862 @default.
- W3044200916 cites W1503982519 @default.
- W3044200916 cites W1513732820 @default.
- W3044200916 cites W1533182319 @default.
- W3044200916 cites W1555950902 @default.
- W3044200916 cites W1590922092 @default.
- W3044200916 cites W1960775208 @default.
- W3044200916 cites W1964647807 @default.
- W3044200916 cites W1970183927 @default.
- W3044200916 cites W1971099835 @default.
- W3044200916 cites W1973314707 @default.
- W3044200916 cites W1975215939 @default.
- W3044200916 cites W1977351805 @default.
- W3044200916 cites W1982623886 @default.
- W3044200916 cites W1984514442 @default.
- W3044200916 cites W1985817801 @default.
- W3044200916 cites W1988550469 @default.
- W3044200916 cites W1988685561 @default.
- W3044200916 cites W1992758377 @default.
- W3044200916 cites W1993727061 @default.
- W3044200916 cites W1996056034 @default.
- W3044200916 cites W1996516375 @default.
- W3044200916 cites W1998439728 @default.
- W3044200916 cites W2000172809 @default.
- W3044200916 cites W2008010045 @default.
- W3044200916 cites W2008522316 @default.
- W3044200916 cites W2010150056 @default.
- W3044200916 cites W2012118327 @default.
- W3044200916 cites W2013669230 @default.
- W3044200916 cites W2014740640 @default.
- W3044200916 cites W2016450387 @default.
- W3044200916 cites W2017458088 @default.
- W3044200916 cites W2018842116 @default.
- W3044200916 cites W2019510146 @default.
- W3044200916 cites W2019957091 @default.
- W3044200916 cites W2020979942 @default.
- W3044200916 cites W2022205731 @default.
- W3044200916 cites W2036881582 @default.
- W3044200916 cites W2040578694 @default.
- W3044200916 cites W2041117772 @default.
- W3044200916 cites W2043847259 @default.
- W3044200916 cites W2046463643 @default.
- W3044200916 cites W2046629514 @default.
- W3044200916 cites W2047114443 @default.
- W3044200916 cites W2049271682 @default.
- W3044200916 cites W2051052374 @default.
- W3044200916 cites W2065989874 @default.
- W3044200916 cites W2066173393 @default.
- W3044200916 cites W2069667737 @default.
- W3044200916 cites W2070805017 @default.
- W3044200916 cites W2071255217 @default.
- W3044200916 cites W2075785519 @default.
- W3044200916 cites W2083497822 @default.
- W3044200916 cites W2083674322 @default.
- W3044200916 cites W2089118806 @default.
- W3044200916 cites W2091455951 @default.
- W3044200916 cites W2093265100 @default.
- W3044200916 cites W2100085182 @default.
- W3044200916 cites W2101926042 @default.
- W3044200916 cites W2103219856 @default.
- W3044200916 cites W2103613139 @default.
- W3044200916 cites W2111929989 @default.
- W3044200916 cites W2120160157 @default.
- W3044200916 cites W2122588877 @default.
- W3044200916 cites W2136739076 @default.
- W3044200916 cites W2140260638 @default.
- W3044200916 cites W2142591013 @default.
- W3044200916 cites W2147181843 @default.
- W3044200916 cites W2147555471 @default.
- W3044200916 cites W2155573868 @default.
- W3044200916 cites W2155988679 @default.
- W3044200916 cites W2157825442 @default.
- W3044200916 cites W2159163713 @default.
- W3044200916 cites W2159342763 @default.
- W3044200916 cites W2169030443 @default.
- W3044200916 cites W2198833850 @default.
- W3044200916 cites W2201333553 @default.
- W3044200916 cites W2208293910 @default.
- W3044200916 cites W2221487567 @default.
- W3044200916 cites W2225976211 @default.
- W3044200916 cites W2275605338 @default.
- W3044200916 cites W2277439455 @default.
- W3044200916 cites W2299917073 @default.
- W3044200916 cites W2313172030 @default.
- W3044200916 cites W2314454931 @default.
- W3044200916 cites W2315773447 @default.
- W3044200916 cites W2337403412 @default.
- W3044200916 cites W2344471832 @default.
- W3044200916 cites W2518510449 @default.