Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044202631> ?p ?o ?g. }
- W3044202631 endingPage "133927" @default.
- W3044202631 startingPage "133914" @default.
- W3044202631 abstract "Convolutional neural networks (CNN) now become one of the most popular methods in synthetic aperture radar (SAR) target recognition. To fully exploit the deep features learned by CNN, this paper considers all the feature maps from different convolution layers. At each layer, the Spearman rank correlation is employed to evaluate the similarities between the feature maps and original SAR image. A certain proportion of feature maps with high similarities are selected and jointly represented based on the joint sparse representation (JSR) model. For the reconstruction error vectors from different layers, they are combined based on linear weighting using a random weight matrix. The fused reconstruction errors are analyzed to form a decision value for target recognition. The feature selection chooses the robust features and JSR considers the inner correlations between the feature maps from the same layer. In addition, the linear weighting using the random weight matrix could statistically reveal the correlations between the test sample and a certain training class. Therefore, the overall effectiveness and robustness of the proposed method can be enhanced. By performing experiments on the moving and stationary target acquisition and recognition (MSTAR) dataset, the proposed method could achieve a very high average recognition rate of 99.32% for ten classes of ground targets under the standard operating condition (SOC). Furthermore, under the extended operating conditions (EOCs) like configuration differences, depression angle differences, noise corruption, and partial occlusion, the proposed could also achieve superior robustness over some state-of-the-art SAR target recognition methods." @default.
- W3044202631 created "2020-07-29" @default.
- W3044202631 creator A5057466267 @default.
- W3044202631 date "2020-01-01" @default.
- W3044202631 modified "2023-09-27" @default.
- W3044202631 title "Selection of Multi-Level Deep Features via Spearman Rank Correlation for Synthetic Aperture Radar Target Recognition Using Decision Fusion" @default.
- W3044202631 cites W1558921750 @default.
- W3044202631 cites W1892362931 @default.
- W3044202631 cites W1965572316 @default.
- W3044202631 cites W1998943499 @default.
- W3044202631 cites W2010853190 @default.
- W3044202631 cites W2013203016 @default.
- W3044202631 cites W2038501427 @default.
- W3044202631 cites W2052172955 @default.
- W3044202631 cites W2064064007 @default.
- W3044202631 cites W2065337811 @default.
- W3044202631 cites W2066737116 @default.
- W3044202631 cites W2080639449 @default.
- W3044202631 cites W2097117768 @default.
- W3044202631 cites W2103474162 @default.
- W3044202631 cites W2111525901 @default.
- W3044202631 cites W2124014399 @default.
- W3044202631 cites W2124648367 @default.
- W3044202631 cites W2130213634 @default.
- W3044202631 cites W2147228188 @default.
- W3044202631 cites W2148791593 @default.
- W3044202631 cites W2149918662 @default.
- W3044202631 cites W2150486153 @default.
- W3044202631 cites W2159582914 @default.
- W3044202631 cites W2160445017 @default.
- W3044202631 cites W2194775991 @default.
- W3044202631 cites W2262462480 @default.
- W3044202631 cites W2269648248 @default.
- W3044202631 cites W2281856034 @default.
- W3044202631 cites W2292481059 @default.
- W3044202631 cites W2333697415 @default.
- W3044202631 cites W2410591237 @default.
- W3044202631 cites W2466539075 @default.
- W3044202631 cites W2511885285 @default.
- W3044202631 cites W2520537062 @default.
- W3044202631 cites W2521772843 @default.
- W3044202631 cites W2534070885 @default.
- W3044202631 cites W2538697614 @default.
- W3044202631 cites W2565205368 @default.
- W3044202631 cites W2578577414 @default.
- W3044202631 cites W2588453093 @default.
- W3044202631 cites W2596473454 @default.
- W3044202631 cites W2730249686 @default.
- W3044202631 cites W2767982410 @default.
- W3044202631 cites W2780334404 @default.
- W3044202631 cites W2782522152 @default.
- W3044202631 cites W2782556815 @default.
- W3044202631 cites W2790999052 @default.
- W3044202631 cites W2792013771 @default.
- W3044202631 cites W2797425815 @default.
- W3044202631 cites W2804451427 @default.
- W3044202631 cites W2883270032 @default.
- W3044202631 cites W2886347302 @default.
- W3044202631 cites W2889621419 @default.
- W3044202631 cites W2891190453 @default.
- W3044202631 cites W2891609780 @default.
- W3044202631 cites W2900193097 @default.
- W3044202631 cites W2918419857 @default.
- W3044202631 cites W2923249467 @default.
- W3044202631 cites W2948594896 @default.
- W3044202631 cites W2965625506 @default.
- W3044202631 cites W2989280734 @default.
- W3044202631 doi "https://doi.org/10.1109/access.2020.3010969" @default.
- W3044202631 hasPublicationYear "2020" @default.
- W3044202631 type Work @default.
- W3044202631 sameAs 3044202631 @default.
- W3044202631 citedByCount "8" @default.
- W3044202631 countsByYear W30442026312020 @default.
- W3044202631 countsByYear W30442026312021 @default.
- W3044202631 countsByYear W30442026312022 @default.
- W3044202631 countsByYear W30442026312023 @default.
- W3044202631 crossrefType "journal-article" @default.
- W3044202631 hasAuthorship W3044202631A5057466267 @default.
- W3044202631 hasBestOaLocation W30442026311 @default.
- W3044202631 hasConcept C101601086 @default.
- W3044202631 hasConcept C109094680 @default.
- W3044202631 hasConcept C10929652 @default.
- W3044202631 hasConcept C114614502 @default.
- W3044202631 hasConcept C117220453 @default.
- W3044202631 hasConcept C119857082 @default.
- W3044202631 hasConcept C153180895 @default.
- W3044202631 hasConcept C154945302 @default.
- W3044202631 hasConcept C159744936 @default.
- W3044202631 hasConcept C164226766 @default.
- W3044202631 hasConcept C2524010 @default.
- W3044202631 hasConcept C2779726219 @default.
- W3044202631 hasConcept C31972630 @default.
- W3044202631 hasConcept C33923547 @default.
- W3044202631 hasConcept C33954974 @default.
- W3044202631 hasConcept C41008148 @default.
- W3044202631 hasConcept C554190296 @default.
- W3044202631 hasConcept C76155785 @default.
- W3044202631 hasConcept C81917197 @default.