Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044205519> ?p ?o ?g. }
- W3044205519 endingPage "2345" @default.
- W3044205519 startingPage "2345" @default.
- W3044205519 abstract "Object-based image analysis (OBIA) is better than pixel-based image analysis for change detection (CD) in very high-resolution (VHR) remote sensing images. Although the effectiveness of deep learning approaches has recently been proved, few studies have investigated OBIA and deep learning for CD. Previously proposed methods use the object information obtained from the preprocessing and postprocessing phase of deep learning. In general, they use the dominant or most frequently used label information with respect to all the pixels inside an object without considering any quantitative criteria to integrate the deep learning network and object information. In this study, we developed an object-based CD method for VHR satellite images using a deep learning network to denote the uncertainty associated with an object and effectively detect the changes in an area without the ground truth data. The proposed method defines the uncertainty associated with an object and mainly includes two phases. Initially, CD objects were generated by unsupervised CD methods, and the objects were used to train the CD network comprising three-dimensional convolutional layers and convolutional long short-term memory layers. The CD objects were updated according to the uncertainty level after the learning process was completed. Further, the updated CD objects were considered as the training data for the CD network. This process was repeated until the entire area was classified into two classes, i.e., change and no-change, with respect to the object units or defined epoch. The experiments conducted using two different VHR satellite images confirmed that the proposed method achieved the best performance when compared with the performances obtained using the traditional CD approaches. The method was less affected by salt and pepper noise and could effectively extract the region of change in object units without ground truth data. Furthermore, the proposed method can offer advantages associated with unsupervised CD methods and a CD network subjected to postprocessing by effectively utilizing the deep learning technique and object information." @default.
- W3044205519 created "2020-07-29" @default.
- W3044205519 creator A5076998023 @default.
- W3044205519 creator A5082613258 @default.
- W3044205519 creator A5085605622 @default.
- W3044205519 date "2020-07-22" @default.
- W3044205519 modified "2023-10-06" @default.
- W3044205519 title "Uncertainty Analysis for Object-Based Change Detection in Very High-Resolution Satellite Images Using Deep Learning Network" @default.
- W3044205519 cites W1972023946 @default.
- W3044205519 cites W1979061792 @default.
- W3044205519 cites W1991129553 @default.
- W3044205519 cites W1998595580 @default.
- W3044205519 cites W1999478155 @default.
- W3044205519 cites W2004243874 @default.
- W3044205519 cites W2011572981 @default.
- W3044205519 cites W2036798369 @default.
- W3044205519 cites W2073134030 @default.
- W3044205519 cites W2076923985 @default.
- W3044205519 cites W2097989534 @default.
- W3044205519 cites W2112959383 @default.
- W3044205519 cites W2119879130 @default.
- W3044205519 cites W2123822317 @default.
- W3044205519 cites W2153633422 @default.
- W3044205519 cites W2154406711 @default.
- W3044205519 cites W2157026765 @default.
- W3044205519 cites W2161273109 @default.
- W3044205519 cites W2165577558 @default.
- W3044205519 cites W2521868507 @default.
- W3044205519 cites W2572303978 @default.
- W3044205519 cites W2616755213 @default.
- W3044205519 cites W2782934949 @default.
- W3044205519 cites W2801774111 @default.
- W3044205519 cites W2900587135 @default.
- W3044205519 cites W2908840642 @default.
- W3044205519 cites W2924355952 @default.
- W3044205519 cites W2939242910 @default.
- W3044205519 cites W2940726923 @default.
- W3044205519 cites W2942497932 @default.
- W3044205519 cites W2975037119 @default.
- W3044205519 cites W2980141472 @default.
- W3044205519 cites W3011559544 @default.
- W3044205519 cites W3015167329 @default.
- W3044205519 cites W3102955142 @default.
- W3044205519 doi "https://doi.org/10.3390/rs12152345" @default.
- W3044205519 hasPublicationYear "2020" @default.
- W3044205519 type Work @default.
- W3044205519 sameAs 3044205519 @default.
- W3044205519 citedByCount "14" @default.
- W3044205519 countsByYear W30442055192020 @default.
- W3044205519 countsByYear W30442055192021 @default.
- W3044205519 countsByYear W30442055192022 @default.
- W3044205519 countsByYear W30442055192023 @default.
- W3044205519 crossrefType "journal-article" @default.
- W3044205519 hasAuthorship W3044205519A5076998023 @default.
- W3044205519 hasAuthorship W3044205519A5082613258 @default.
- W3044205519 hasAuthorship W3044205519A5085605622 @default.
- W3044205519 hasBestOaLocation W30442055191 @default.
- W3044205519 hasConcept C108583219 @default.
- W3044205519 hasConcept C124101348 @default.
- W3044205519 hasConcept C127413603 @default.
- W3044205519 hasConcept C146849305 @default.
- W3044205519 hasConcept C146978453 @default.
- W3044205519 hasConcept C153180895 @default.
- W3044205519 hasConcept C154945302 @default.
- W3044205519 hasConcept C160633673 @default.
- W3044205519 hasConcept C19269812 @default.
- W3044205519 hasConcept C203595873 @default.
- W3044205519 hasConcept C205649164 @default.
- W3044205519 hasConcept C2776151529 @default.
- W3044205519 hasConcept C2781238097 @default.
- W3044205519 hasConcept C31972630 @default.
- W3044205519 hasConcept C34736171 @default.
- W3044205519 hasConcept C41008148 @default.
- W3044205519 hasConcept C62649853 @default.
- W3044205519 hasConceptScore W3044205519C108583219 @default.
- W3044205519 hasConceptScore W3044205519C124101348 @default.
- W3044205519 hasConceptScore W3044205519C127413603 @default.
- W3044205519 hasConceptScore W3044205519C146849305 @default.
- W3044205519 hasConceptScore W3044205519C146978453 @default.
- W3044205519 hasConceptScore W3044205519C153180895 @default.
- W3044205519 hasConceptScore W3044205519C154945302 @default.
- W3044205519 hasConceptScore W3044205519C160633673 @default.
- W3044205519 hasConceptScore W3044205519C19269812 @default.
- W3044205519 hasConceptScore W3044205519C203595873 @default.
- W3044205519 hasConceptScore W3044205519C205649164 @default.
- W3044205519 hasConceptScore W3044205519C2776151529 @default.
- W3044205519 hasConceptScore W3044205519C2781238097 @default.
- W3044205519 hasConceptScore W3044205519C31972630 @default.
- W3044205519 hasConceptScore W3044205519C34736171 @default.
- W3044205519 hasConceptScore W3044205519C41008148 @default.
- W3044205519 hasConceptScore W3044205519C62649853 @default.
- W3044205519 hasFunder F4320322120 @default.
- W3044205519 hasIssue "15" @default.
- W3044205519 hasLocation W30442055191 @default.
- W3044205519 hasLocation W30442055192 @default.
- W3044205519 hasOpenAccess W3044205519 @default.
- W3044205519 hasPrimaryLocation W30442055191 @default.
- W3044205519 hasRelatedWork W1988485990 @default.