Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044271503> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3044271503 endingPage "1018" @default.
- W3044271503 startingPage "1011" @default.
- W3044271503 abstract "Deep machine learning includes a series of layers to mimic the working of the human brain for taking a decision. Deep learning networks have shown good results in character recognition in the past. This paper evaluates the performance of different deep learning networks like Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) based recurrent neural network and Convolutional LSTM on printed Odia characters. The Odia character database contains more than 24,000 images of printed Odia characters (including simple as well as complex characters) out of which 23,857 nos. of images are chosen for this work. Besides these three, a nested Convolutional neural network model is developed for different categories of printed character image groups which are formed based on their writing style. Here, in this study, the nested model is showing the best results in terms of error rate, accuracy and no. of epochs in comparison to the other three. Different pre-processing steps like binarization, size-normalization, blurring, interpolation, etc. are involved before passing the images to the deep neural networks to increase the recognition accuracy." @default.
- W3044271503 created "2020-07-29" @default.
- W3044271503 creator A5029568021 @default.
- W3044271503 creator A5055774886 @default.
- W3044271503 creator A5059967480 @default.
- W3044271503 date "2020-07-01" @default.
- W3044271503 modified "2023-09-27" @default.
- W3044271503 title "Performance Evaluation of Deep Learning Networks on Printed Odia Characters" @default.
- W3044271503 cites W1485009520 @default.
- W3044271503 cites W2022075901 @default.
- W3044271503 cites W2060580591 @default.
- W3044271503 cites W2125792038 @default.
- W3044271503 cites W2282186389 @default.
- W3044271503 cites W2783638251 @default.
- W3044271503 cites W3007624643 @default.
- W3044271503 cites W3013133070 @default.
- W3044271503 cites W761446652 @default.
- W3044271503 doi "https://doi.org/10.3844/jcssp.2020.1011.1018" @default.
- W3044271503 hasPublicationYear "2020" @default.
- W3044271503 type Work @default.
- W3044271503 sameAs 3044271503 @default.
- W3044271503 citedByCount "1" @default.
- W3044271503 countsByYear W30442715032021 @default.
- W3044271503 crossrefType "journal-article" @default.
- W3044271503 hasAuthorship W3044271503A5029568021 @default.
- W3044271503 hasAuthorship W3044271503A5055774886 @default.
- W3044271503 hasAuthorship W3044271503A5059967480 @default.
- W3044271503 hasBestOaLocation W30442715031 @default.
- W3044271503 hasConcept C108583219 @default.
- W3044271503 hasConcept C115961682 @default.
- W3044271503 hasConcept C136886441 @default.
- W3044271503 hasConcept C137800194 @default.
- W3044271503 hasConcept C144024400 @default.
- W3044271503 hasConcept C153180895 @default.
- W3044271503 hasConcept C154945302 @default.
- W3044271503 hasConcept C19165224 @default.
- W3044271503 hasConcept C2524010 @default.
- W3044271503 hasConcept C2780861071 @default.
- W3044271503 hasConcept C2987247673 @default.
- W3044271503 hasConcept C33923547 @default.
- W3044271503 hasConcept C41008148 @default.
- W3044271503 hasConcept C50644808 @default.
- W3044271503 hasConcept C546480517 @default.
- W3044271503 hasConcept C81363708 @default.
- W3044271503 hasConceptScore W3044271503C108583219 @default.
- W3044271503 hasConceptScore W3044271503C115961682 @default.
- W3044271503 hasConceptScore W3044271503C136886441 @default.
- W3044271503 hasConceptScore W3044271503C137800194 @default.
- W3044271503 hasConceptScore W3044271503C144024400 @default.
- W3044271503 hasConceptScore W3044271503C153180895 @default.
- W3044271503 hasConceptScore W3044271503C154945302 @default.
- W3044271503 hasConceptScore W3044271503C19165224 @default.
- W3044271503 hasConceptScore W3044271503C2524010 @default.
- W3044271503 hasConceptScore W3044271503C2780861071 @default.
- W3044271503 hasConceptScore W3044271503C2987247673 @default.
- W3044271503 hasConceptScore W3044271503C33923547 @default.
- W3044271503 hasConceptScore W3044271503C41008148 @default.
- W3044271503 hasConceptScore W3044271503C50644808 @default.
- W3044271503 hasConceptScore W3044271503C546480517 @default.
- W3044271503 hasConceptScore W3044271503C81363708 @default.
- W3044271503 hasIssue "7" @default.
- W3044271503 hasLocation W30442715031 @default.
- W3044271503 hasOpenAccess W3044271503 @default.
- W3044271503 hasPrimaryLocation W30442715031 @default.
- W3044271503 hasRelatedWork W2105354826 @default.
- W3044271503 hasRelatedWork W2122836226 @default.
- W3044271503 hasRelatedWork W2175121793 @default.
- W3044271503 hasRelatedWork W2732542196 @default.
- W3044271503 hasRelatedWork W2738221750 @default.
- W3044271503 hasRelatedWork W2763109982 @default.
- W3044271503 hasRelatedWork W3163389044 @default.
- W3044271503 hasRelatedWork W564581980 @default.
- W3044271503 hasRelatedWork W2075186610 @default.
- W3044271503 hasRelatedWork W2185993203 @default.
- W3044271503 hasVolume "16" @default.
- W3044271503 isParatext "false" @default.
- W3044271503 isRetracted "false" @default.
- W3044271503 magId "3044271503" @default.
- W3044271503 workType "article" @default.