Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044282854> ?p ?o ?g. }
- W3044282854 endingPage "101704" @default.
- W3044282854 startingPage "101704" @default.
- W3044282854 abstract "Text-based data sources like narratives and stories have become increasingly popular as critical insight generator in energy research and social science. However, their implications in policy application usually remain superficial and fail to fully exploit state-of-the-art resources which digital era holds for text analysis. This paper illustrates the potential of deep-narrative analysis in energy policy research using text analysis tools from the cutting-edge domain of computational social sciences, notably topic modelling. We argue that a nested application of topic modelling and grounded theory in narrative analysis promises advances in areas where manual-coding driven narrative analysis has traditionally struggled with directionality biases, scaling, systematisation and repeatability. The nested application of the topic model and the grounded theory goes beyond the frequentist approach of narrative analysis and introduces insight generation capabilities based on the probability distribution of words and topics in a text corpus. In this manner, our proposed methodology deconstructs the corpus and enables the analyst to answer research questions based on the foundational element of the text data structure. We verify theoretical compatibility through a meta-analysis of a state-of-the-art bibliographic database on energy policy, narratives and computational social science. Furthermore, we establish a proof-of-concept using a narrative-based case study on energy externalities in slum rehabilitation housing in Mumbai, India. We find that the nested application contributes to the literature gap on the need for multidisciplinary methodologies that can systematically include qualitative evidence into policymaking." @default.
- W3044282854 created "2020-07-29" @default.
- W3044282854 creator A5007263620 @default.
- W3044282854 creator A5021953086 @default.
- W3044282854 creator A5034974642 @default.
- W3044282854 creator A5041371513 @default.
- W3044282854 creator A5053802889 @default.
- W3044282854 date "2020-11-01" @default.
- W3044282854 modified "2023-09-26" @default.
- W3044282854 title "Grounded reality meets machine learning: A deep-narrative analysis framework for energy policy research" @default.
- W3044282854 cites W1753361524 @default.
- W3044282854 cites W1970576589 @default.
- W3044282854 cites W1986043678 @default.
- W3044282854 cites W1987430405 @default.
- W3044282854 cites W2041122661 @default.
- W3044282854 cites W2054930594 @default.
- W3044282854 cites W2057019240 @default.
- W3044282854 cites W2077807272 @default.
- W3044282854 cites W2095655043 @default.
- W3044282854 cites W2097598641 @default.
- W3044282854 cites W2105403790 @default.
- W3044282854 cites W2110205824 @default.
- W3044282854 cites W2117667023 @default.
- W3044282854 cites W2140416075 @default.
- W3044282854 cites W2166056262 @default.
- W3044282854 cites W2183864645 @default.
- W3044282854 cites W2192639594 @default.
- W3044282854 cites W2232035265 @default.
- W3044282854 cites W2311785559 @default.
- W3044282854 cites W2341256577 @default.
- W3044282854 cites W2523582661 @default.
- W3044282854 cites W2605891315 @default.
- W3044282854 cites W2607618454 @default.
- W3044282854 cites W2621872929 @default.
- W3044282854 cites W2740964392 @default.
- W3044282854 cites W2742276251 @default.
- W3044282854 cites W2744833873 @default.
- W3044282854 cites W2747542429 @default.
- W3044282854 cites W2901145157 @default.
- W3044282854 cites W2906994370 @default.
- W3044282854 cites W2908210228 @default.
- W3044282854 cites W2913100704 @default.
- W3044282854 cites W2915451707 @default.
- W3044282854 cites W2921581680 @default.
- W3044282854 cites W2943849356 @default.
- W3044282854 cites W2955528437 @default.
- W3044282854 cites W2962686197 @default.
- W3044282854 cites W2966504959 @default.
- W3044282854 cites W2967458960 @default.
- W3044282854 cites W2973331288 @default.
- W3044282854 cites W3015847589 @default.
- W3044282854 cites W4249397024 @default.
- W3044282854 cites W994889512 @default.
- W3044282854 doi "https://doi.org/10.1016/j.erss.2020.101704" @default.
- W3044282854 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7563684" @default.
- W3044282854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33145178" @default.
- W3044282854 hasPublicationYear "2020" @default.
- W3044282854 type Work @default.
- W3044282854 sameAs 3044282854 @default.
- W3044282854 citedByCount "19" @default.
- W3044282854 countsByYear W30442828542020 @default.
- W3044282854 countsByYear W30442828542021 @default.
- W3044282854 countsByYear W30442828542022 @default.
- W3044282854 countsByYear W30442828542023 @default.
- W3044282854 crossrefType "journal-article" @default.
- W3044282854 hasAuthorship W3044282854A5007263620 @default.
- W3044282854 hasAuthorship W3044282854A5021953086 @default.
- W3044282854 hasAuthorship W3044282854A5034974642 @default.
- W3044282854 hasAuthorship W3044282854A5041371513 @default.
- W3044282854 hasAuthorship W3044282854A5053802889 @default.
- W3044282854 hasBestOaLocation W30442828541 @default.
- W3044282854 hasConcept C117893075 @default.
- W3044282854 hasConcept C12772571 @default.
- W3044282854 hasConcept C138885662 @default.
- W3044282854 hasConcept C144024400 @default.
- W3044282854 hasConcept C156325361 @default.
- W3044282854 hasConcept C165696696 @default.
- W3044282854 hasConcept C190248442 @default.
- W3044282854 hasConcept C199033989 @default.
- W3044282854 hasConcept C2522767166 @default.
- W3044282854 hasConcept C36289849 @default.
- W3044282854 hasConcept C38652104 @default.
- W3044282854 hasConcept C41008148 @default.
- W3044282854 hasConcept C41895202 @default.
- W3044282854 hasConcept C63985673 @default.
- W3044282854 hasConceptScore W3044282854C117893075 @default.
- W3044282854 hasConceptScore W3044282854C12772571 @default.
- W3044282854 hasConceptScore W3044282854C138885662 @default.
- W3044282854 hasConceptScore W3044282854C144024400 @default.
- W3044282854 hasConceptScore W3044282854C156325361 @default.
- W3044282854 hasConceptScore W3044282854C165696696 @default.
- W3044282854 hasConceptScore W3044282854C190248442 @default.
- W3044282854 hasConceptScore W3044282854C199033989 @default.
- W3044282854 hasConceptScore W3044282854C2522767166 @default.
- W3044282854 hasConceptScore W3044282854C36289849 @default.
- W3044282854 hasConceptScore W3044282854C38652104 @default.
- W3044282854 hasConceptScore W3044282854C41008148 @default.
- W3044282854 hasConceptScore W3044282854C41895202 @default.