Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044298723> ?p ?o ?g. }
- W3044298723 endingPage "101069" @default.
- W3044298723 startingPage "101069" @default.
- W3044298723 abstract "Accurate demand forecasting is critical and difficult for managers, especially for complex demand patterns. In this paper, we develop methods for demand forecasting of sparse, transient and erratic medical consumables. Firstly, combining statistical learning of historical data with basic linear regression, price discount estimates are proposed. To reduce sparse estimates, the transformation of historical demand data is added to the linear regression model. Secondly, some general methods are proposed to deal with demand patterns that we cannot clearly capture. Thirdly, we propose optimized model specifications to select optimal model and reduce redundant variables to avoid underfitting or overfitting. In the last, some numerical experiments are carried out based on the model we propose and some completive models in the actual demand data set. In this study, we develop the most realistic price discount response function based on the problem background, which can further improve demand forecasting performance. This paper also discusses many interesting findings and conclusions." @default.
- W3044298723 created "2020-07-29" @default.
- W3044298723 creator A5019977629 @default.
- W3044298723 creator A5033257724 @default.
- W3044298723 creator A5050351141 @default.
- W3044298723 date "2020-11-01" @default.
- W3044298723 modified "2023-10-17" @default.
- W3044298723 title "Intelligent modeling of abnormal demand forecasting for medical consumables in smart city" @default.
- W3044298723 cites W1839113334 @default.
- W3044298723 cites W1972835575 @default.
- W3044298723 cites W1977304848 @default.
- W3044298723 cites W1989787309 @default.
- W3044298723 cites W1992880712 @default.
- W3044298723 cites W1996640396 @default.
- W3044298723 cites W2003629494 @default.
- W3044298723 cites W2005270316 @default.
- W3044298723 cites W2007766458 @default.
- W3044298723 cites W2010589031 @default.
- W3044298723 cites W2012734550 @default.
- W3044298723 cites W2017468850 @default.
- W3044298723 cites W2030155757 @default.
- W3044298723 cites W2039449865 @default.
- W3044298723 cites W2061436426 @default.
- W3044298723 cites W2063251682 @default.
- W3044298723 cites W2081858538 @default.
- W3044298723 cites W2097192888 @default.
- W3044298723 cites W2098215764 @default.
- W3044298723 cites W2098545770 @default.
- W3044298723 cites W2098944378 @default.
- W3044298723 cites W2098998642 @default.
- W3044298723 cites W2111454936 @default.
- W3044298723 cites W2114733835 @default.
- W3044298723 cites W2119996119 @default.
- W3044298723 cites W2124438244 @default.
- W3044298723 cites W2128107650 @default.
- W3044298723 cites W2136192534 @default.
- W3044298723 cites W2138564512 @default.
- W3044298723 cites W2142635246 @default.
- W3044298723 cites W2143209008 @default.
- W3044298723 cites W2153029189 @default.
- W3044298723 cites W2157443709 @default.
- W3044298723 cites W2158196600 @default.
- W3044298723 cites W2162272859 @default.
- W3044298723 cites W2166304961 @default.
- W3044298723 cites W2168175751 @default.
- W3044298723 cites W2171589479 @default.
- W3044298723 cites W2174890733 @default.
- W3044298723 cites W4241727697 @default.
- W3044298723 cites W4253543067 @default.
- W3044298723 cites W4292022450 @default.
- W3044298723 doi "https://doi.org/10.1016/j.eti.2020.101069" @default.
- W3044298723 hasPublicationYear "2020" @default.
- W3044298723 type Work @default.
- W3044298723 sameAs 3044298723 @default.
- W3044298723 citedByCount "1" @default.
- W3044298723 countsByYear W30442987232023 @default.
- W3044298723 crossrefType "journal-article" @default.
- W3044298723 hasAuthorship W3044298723A5019977629 @default.
- W3044298723 hasAuthorship W3044298723A5033257724 @default.
- W3044298723 hasAuthorship W3044298723A5050351141 @default.
- W3044298723 hasConcept C119857082 @default.
- W3044298723 hasConcept C126255220 @default.
- W3044298723 hasConcept C144133560 @default.
- W3044298723 hasConcept C149782125 @default.
- W3044298723 hasConcept C162324750 @default.
- W3044298723 hasConcept C162853370 @default.
- W3044298723 hasConcept C193809577 @default.
- W3044298723 hasConcept C22019652 @default.
- W3044298723 hasConcept C33923547 @default.
- W3044298723 hasConcept C41008148 @default.
- W3044298723 hasConcept C42475967 @default.
- W3044298723 hasConcept C50644808 @default.
- W3044298723 hasConcept C62126406 @default.
- W3044298723 hasConceptScore W3044298723C119857082 @default.
- W3044298723 hasConceptScore W3044298723C126255220 @default.
- W3044298723 hasConceptScore W3044298723C144133560 @default.
- W3044298723 hasConceptScore W3044298723C149782125 @default.
- W3044298723 hasConceptScore W3044298723C162324750 @default.
- W3044298723 hasConceptScore W3044298723C162853370 @default.
- W3044298723 hasConceptScore W3044298723C193809577 @default.
- W3044298723 hasConceptScore W3044298723C22019652 @default.
- W3044298723 hasConceptScore W3044298723C33923547 @default.
- W3044298723 hasConceptScore W3044298723C41008148 @default.
- W3044298723 hasConceptScore W3044298723C42475967 @default.
- W3044298723 hasConceptScore W3044298723C50644808 @default.
- W3044298723 hasConceptScore W3044298723C62126406 @default.
- W3044298723 hasFunder F4320321001 @default.
- W3044298723 hasLocation W30442987231 @default.
- W3044298723 hasOpenAccess W3044298723 @default.
- W3044298723 hasPrimaryLocation W30442987231 @default.
- W3044298723 hasRelatedWork W2186333919 @default.
- W3044298723 hasRelatedWork W2795435272 @default.
- W3044298723 hasRelatedWork W2951851447 @default.
- W3044298723 hasRelatedWork W2989932438 @default.
- W3044298723 hasRelatedWork W3011996705 @default.
- W3044298723 hasRelatedWork W3033000596 @default.
- W3044298723 hasRelatedWork W3044298723 @default.
- W3044298723 hasRelatedWork W3047645469 @default.