Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044304208> ?p ?o ?g. }
- W3044304208 endingPage "807.e9" @default.
- W3044304208 startingPage "799" @default.
- W3044304208 abstract "BackgroundCoronavirus disease 2019 (COVID-19) has rapidly become a global pandemic. Because the severity of the disease is highly variable, predictive models to stratify patients according to their mortality risk are needed.ObjectiveOur aim was to develop a model able to predict the risk of fatal outcome in patients with COVID-19 that could be used easily at the time of patients' arrival at the hospital.MethodsWe constructed a prospective cohort with 611 adult patients in whom COVID-19 was diagnosed between March 10 and April 12, 2020, in a tertiary hospital in Madrid, Spain. The analysis included 501 patients who had been discharged or had died by April 20, 2020. The capacity of several biomarkers, measured at the beginning of hospitalization, to predict mortality was assessed individually. Those biomarkers that independently contributed to improve mortality prediction were included in a multivariable risk model.ResultsHigh IL-6 level, C-reactive protein level, lactate dehydrogenase (LDH) level, ferritin level, d-dimer level, neutrophil count, and neutrophil-to-lymphocyte ratio were all predictive of mortality (area under the curve >0.70), as were low albumin level, lymphocyte count, monocyte count, and ratio of peripheral blood oxygen saturation to fraction of inspired oxygen (SpO2/FiO2). A multivariable mortality risk model including the SpO2/FiO2 ratio, neutrophil-to-lymphocyte ratio, LDH level, IL-6 level, and age was developed and showed high accuracy for the prediction of fatal outcome (area under the curve 0.94). The optimal cutoff reliably classified patients (including patients with no initial respiratory distress) as survivors and nonsurvivors with 0.88 sensitivity and 0.89 specificity.ConclusionThis mortality risk model allows early risk stratification of hospitalized patients with COVID-19 before the appearance of obvious signs of clinical deterioration, and it can be used as a tool to guide clinical decision making. Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic. Because the severity of the disease is highly variable, predictive models to stratify patients according to their mortality risk are needed. Our aim was to develop a model able to predict the risk of fatal outcome in patients with COVID-19 that could be used easily at the time of patients' arrival at the hospital. We constructed a prospective cohort with 611 adult patients in whom COVID-19 was diagnosed between March 10 and April 12, 2020, in a tertiary hospital in Madrid, Spain. The analysis included 501 patients who had been discharged or had died by April 20, 2020. The capacity of several biomarkers, measured at the beginning of hospitalization, to predict mortality was assessed individually. Those biomarkers that independently contributed to improve mortality prediction were included in a multivariable risk model. High IL-6 level, C-reactive protein level, lactate dehydrogenase (LDH) level, ferritin level, d-dimer level, neutrophil count, and neutrophil-to-lymphocyte ratio were all predictive of mortality (area under the curve >0.70), as were low albumin level, lymphocyte count, monocyte count, and ratio of peripheral blood oxygen saturation to fraction of inspired oxygen (SpO2/FiO2). A multivariable mortality risk model including the SpO2/FiO2 ratio, neutrophil-to-lymphocyte ratio, LDH level, IL-6 level, and age was developed and showed high accuracy for the prediction of fatal outcome (area under the curve 0.94). The optimal cutoff reliably classified patients (including patients with no initial respiratory distress) as survivors and nonsurvivors with 0.88 sensitivity and 0.89 specificity. This mortality risk model allows early risk stratification of hospitalized patients with COVID-19 before the appearance of obvious signs of clinical deterioration, and it can be used as a tool to guide clinical decision making." @default.
- W3044304208 created "2020-07-29" @default.
- W3044304208 creator A5012550818 @default.
- W3044304208 creator A5016258231 @default.
- W3044304208 creator A5025369878 @default.
- W3044304208 creator A5029352820 @default.
- W3044304208 creator A5030849637 @default.
- W3044304208 creator A5034182883 @default.
- W3044304208 creator A5055994846 @default.
- W3044304208 creator A5058171858 @default.
- W3044304208 creator A5062363608 @default.
- W3044304208 creator A5064146880 @default.
- W3044304208 creator A5076127063 @default.
- W3044304208 creator A5077272269 @default.
- W3044304208 creator A5080084145 @default.
- W3044304208 creator A5084014072 @default.
- W3044304208 creator A5089429863 @default.
- W3044304208 creator A5091734916 @default.
- W3044304208 date "2020-10-01" @default.
- W3044304208 modified "2023-10-18" @default.
- W3044304208 title "IL-6–based mortality risk model for hospitalized patients with COVID-19" @default.
- W3044304208 cites W1144300234 @default.
- W3044304208 cites W2089785792 @default.
- W3044304208 cites W2995991393 @default.
- W3044304208 cites W3001118548 @default.
- W3044304208 cites W3001897055 @default.
- W3044304208 cites W3004743633 @default.
- W3044304208 cites W3008028633 @default.
- W3044304208 cites W3008090866 @default.
- W3044304208 cites W3009885589 @default.
- W3044304208 cites W3011812996 @default.
- W3044304208 cites W3014003872 @default.
- W3044304208 cites W3016489853 @default.
- W3044304208 cites W3016535995 @default.
- W3044304208 cites W3019785070 @default.
- W3044304208 cites W3020501159 @default.
- W3044304208 cites W3021343000 @default.
- W3044304208 cites W3022778033 @default.
- W3044304208 cites W3022809052 @default.
- W3044304208 cites W3022970339 @default.
- W3044304208 cites W3024853795 @default.
- W3044304208 cites W3025160648 @default.
- W3044304208 cites W3025394897 @default.
- W3044304208 cites W3030325615 @default.
- W3044304208 cites W3043106189 @default.
- W3044304208 cites W3102902405 @default.
- W3044304208 doi "https://doi.org/10.1016/j.jaci.2020.07.009" @default.
- W3044304208 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7375283" @default.
- W3044304208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32710975" @default.
- W3044304208 hasPublicationYear "2020" @default.
- W3044304208 type Work @default.
- W3044304208 sameAs 3044304208 @default.
- W3044304208 citedByCount "146" @default.
- W3044304208 countsByYear W30443042082020 @default.
- W3044304208 countsByYear W30443042082021 @default.
- W3044304208 countsByYear W30443042082022 @default.
- W3044304208 countsByYear W30443042082023 @default.
- W3044304208 crossrefType "journal-article" @default.
- W3044304208 hasAuthorship W3044304208A5012550818 @default.
- W3044304208 hasAuthorship W3044304208A5016258231 @default.
- W3044304208 hasAuthorship W3044304208A5025369878 @default.
- W3044304208 hasAuthorship W3044304208A5029352820 @default.
- W3044304208 hasAuthorship W3044304208A5030849637 @default.
- W3044304208 hasAuthorship W3044304208A5034182883 @default.
- W3044304208 hasAuthorship W3044304208A5055994846 @default.
- W3044304208 hasAuthorship W3044304208A5058171858 @default.
- W3044304208 hasAuthorship W3044304208A5062363608 @default.
- W3044304208 hasAuthorship W3044304208A5064146880 @default.
- W3044304208 hasAuthorship W3044304208A5076127063 @default.
- W3044304208 hasAuthorship W3044304208A5077272269 @default.
- W3044304208 hasAuthorship W3044304208A5080084145 @default.
- W3044304208 hasAuthorship W3044304208A5084014072 @default.
- W3044304208 hasAuthorship W3044304208A5089429863 @default.
- W3044304208 hasAuthorship W3044304208A5091734916 @default.
- W3044304208 hasBestOaLocation W30443042081 @default.
- W3044304208 hasConcept C126322002 @default.
- W3044304208 hasConcept C178790620 @default.
- W3044304208 hasConcept C179755657 @default.
- W3044304208 hasConcept C185592680 @default.
- W3044304208 hasConcept C188816634 @default.
- W3044304208 hasConcept C2777063308 @default.
- W3044304208 hasConcept C2777761686 @default.
- W3044304208 hasConcept C2778963024 @default.
- W3044304208 hasConcept C29730261 @default.
- W3044304208 hasConcept C34626388 @default.
- W3044304208 hasConcept C540031477 @default.
- W3044304208 hasConcept C58471807 @default.
- W3044304208 hasConcept C71924100 @default.
- W3044304208 hasConcept C74133956 @default.
- W3044304208 hasConcept C76318530 @default.
- W3044304208 hasConcept C76538665 @default.
- W3044304208 hasConceptScore W3044304208C126322002 @default.
- W3044304208 hasConceptScore W3044304208C178790620 @default.
- W3044304208 hasConceptScore W3044304208C179755657 @default.
- W3044304208 hasConceptScore W3044304208C185592680 @default.
- W3044304208 hasConceptScore W3044304208C188816634 @default.
- W3044304208 hasConceptScore W3044304208C2777063308 @default.
- W3044304208 hasConceptScore W3044304208C2777761686 @default.