Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044304801> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3044304801 abstract "We report the development, implementation and complete experimental vindication of a model for complex dynamical behaviors in spin wave envelopes propagating in nonlinear, dissipative driven, damped systems. These backward volume spin waves evolve under attractive nonlinearity in active magnetic thin film-based feedback rings where the major loss mechanisms present in the film are directly compensated by periodic linear amplification. Such a quasi-conservative evolution allows for the self-generation of spin waves and the observation of long-time behaviors $mathcal{O}(mathrm{ms})$ which persist for hundreds to tens of thousands of the fundamental round trip time $mathcal{O}(100~mathrm{ns})$. The cubic-quintic complex Ginzburg-Landau equation is developed as a predictive, descriptive model for the evolution of spin wave envelopes. Over 180000 nodes hours of computation are used to execute more than 10000 simulations in order characterize the model's six dimensional parameter space. This exploration of parameter space was conducted in full generality, spanning a minimum of eight orders of magnitude for each of three loss terms and five orders of magnitude for higher order nonlinearities. Nine distinct classes of behavior were identified, including four categories of dynamical pattern formation. This work contains the first predicted long time dynamical behaviors for spin waves and analogous physical systems. All four categories of dynamical pattern formation that were identified numerically were then cleanly realized experimentally. Additionally we observed the first known examples of dynamical behaviors for dark solitary waves self-generated under attractive nonlinearity. Our experimental verification of these dynamical regimes show that such ideas are not simply theoretical but in fact occur in the real physical world and are observable in an approachable, tunable spin-wave system which matches the conditions of many other real-world physical systems. It further established that the relatively simple cubic-quintic complex Ginzburg-Landau equation provides a highly accurate, effective, and predictive description of complex spin wave dynamics and should replace the commonly used nonlinear Schrodinger equation for these systems. Finally, simulations which model the ring dynamics on the scale round trips were conducted using 130000 node hours over 3000 unique numerical simulations. This yielded a robust general solution for stable bright solitary wave trains evolving under periodic amplification which is the numerical equivalent to the bright solitary wave train initial condition perturbed experimentally to generate soliton fractals and chaotic solitons. Using this novel dynamical equilibrium as an initial condition we developed a mechanism for the generation of bright soliton fractals. Our experimental and numerical works on complex spin wave envelopes in magnetic thin films suggest these systems provide for an approachable, table top, experiment for the study of fundamental nonlinear wave physics. The…" @default.
- W3044304801 created "2020-07-29" @default.
- W3044304801 creator A5022569208 @default.
- W3044304801 date "2020-01-01" @default.
- W3044304801 modified "2023-09-27" @default.
- W3044304801 title "Chaos and complexity of magnetic spin-wave solitary wave dynamics in the complex cubic quintic Ginzburg-Landau equation" @default.
- W3044304801 hasPublicationYear "2020" @default.
- W3044304801 type Work @default.
- W3044304801 sameAs 3044304801 @default.
- W3044304801 citedByCount "0" @default.
- W3044304801 crossrefType "journal-article" @default.
- W3044304801 hasAuthorship W3044304801A5022569208 @default.
- W3044304801 hasConcept C11413529 @default.
- W3044304801 hasConcept C121332964 @default.
- W3044304801 hasConcept C121864883 @default.
- W3044304801 hasConcept C124966035 @default.
- W3044304801 hasConcept C158622935 @default.
- W3044304801 hasConcept C2524010 @default.
- W3044304801 hasConcept C33923547 @default.
- W3044304801 hasConcept C42704618 @default.
- W3044304801 hasConcept C44221107 @default.
- W3044304801 hasConcept C45374587 @default.
- W3044304801 hasConcept C62520636 @default.
- W3044304801 hasConcept C73586568 @default.
- W3044304801 hasConcept C74650414 @default.
- W3044304801 hasConcept C79379906 @default.
- W3044304801 hasConcept C82217956 @default.
- W3044304801 hasConcept C97355855 @default.
- W3044304801 hasConcept C99692599 @default.
- W3044304801 hasConceptScore W3044304801C11413529 @default.
- W3044304801 hasConceptScore W3044304801C121332964 @default.
- W3044304801 hasConceptScore W3044304801C121864883 @default.
- W3044304801 hasConceptScore W3044304801C124966035 @default.
- W3044304801 hasConceptScore W3044304801C158622935 @default.
- W3044304801 hasConceptScore W3044304801C2524010 @default.
- W3044304801 hasConceptScore W3044304801C33923547 @default.
- W3044304801 hasConceptScore W3044304801C42704618 @default.
- W3044304801 hasConceptScore W3044304801C44221107 @default.
- W3044304801 hasConceptScore W3044304801C45374587 @default.
- W3044304801 hasConceptScore W3044304801C62520636 @default.
- W3044304801 hasConceptScore W3044304801C73586568 @default.
- W3044304801 hasConceptScore W3044304801C74650414 @default.
- W3044304801 hasConceptScore W3044304801C79379906 @default.
- W3044304801 hasConceptScore W3044304801C82217956 @default.
- W3044304801 hasConceptScore W3044304801C97355855 @default.
- W3044304801 hasConceptScore W3044304801C99692599 @default.
- W3044304801 hasLocation W30443048011 @default.
- W3044304801 hasOpenAccess W3044304801 @default.
- W3044304801 hasPrimaryLocation W30443048011 @default.
- W3044304801 hasRelatedWork W1485050572 @default.
- W3044304801 hasRelatedWork W1512454013 @default.
- W3044304801 hasRelatedWork W1965205851 @default.
- W3044304801 hasRelatedWork W1971793434 @default.
- W3044304801 hasRelatedWork W1984889294 @default.
- W3044304801 hasRelatedWork W2004396293 @default.
- W3044304801 hasRelatedWork W2007391507 @default.
- W3044304801 hasRelatedWork W2011300173 @default.
- W3044304801 hasRelatedWork W2013639707 @default.
- W3044304801 hasRelatedWork W2014825298 @default.
- W3044304801 hasRelatedWork W2027545882 @default.
- W3044304801 hasRelatedWork W2028395853 @default.
- W3044304801 hasRelatedWork W2056296499 @default.
- W3044304801 hasRelatedWork W2065335892 @default.
- W3044304801 hasRelatedWork W2236076655 @default.
- W3044304801 hasRelatedWork W2239181128 @default.
- W3044304801 hasRelatedWork W2556278159 @default.
- W3044304801 hasRelatedWork W3094111521 @default.
- W3044304801 hasRelatedWork W3103714121 @default.
- W3044304801 hasRelatedWork W3198890464 @default.
- W3044304801 isParatext "false" @default.
- W3044304801 isRetracted "false" @default.
- W3044304801 magId "3044304801" @default.
- W3044304801 workType "article" @default.