Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044334416> ?p ?o ?g. }
- W3044334416 endingPage "12097" @default.
- W3044334416 startingPage "12085" @default.
- W3044334416 abstract "Edge-assisted mobile crowdsensing is an emerging paradigm where mobile users collect, and share sensing data at the edge of networks. With the abundant on-board resources, and large movement patterns of intelligent vehicles, they have become candidates to sense up-to-date, and fine-grained information for large areas. The design of vehicle recruitment in edge-assisted mobile crowdsensing is challenging due to the selfishness, and the uneven distribution of vehicles, as well as the spatiotemporal constraints of vehicular crowdsensing applications. To deal with these challenges, this paper proposes an incentive-aware vehicle recruitment scheme for edge-assisted mobile crowdsensing. In particular, we first design an incentive mechanism to motivate cooperation among the edge server, and the intelligent vehicles, and apply the Nash bargaining theory to obtain the optimal cooperation decision. Furthermore, a practical, and efficient scheme is proposed to weigh the contribution of vehicles. Then, we formulate the participant recruitment as an optimization problem, and prove that it is NP-hard. To address this problem, an effective heuristic algorithm with a guaranteed approximation ratio is proposed, by leveraging the property in submodular optimization. Finally, we conduct extensive simulations, based on a real dataset, to validate the superiority of the proposed schemes." @default.
- W3044334416 created "2020-07-29" @default.
- W3044334416 creator A5000851572 @default.
- W3044334416 creator A5016162479 @default.
- W3044334416 creator A5019111566 @default.
- W3044334416 creator A5031412456 @default.
- W3044334416 creator A5071392558 @default.
- W3044334416 date "2020-10-01" @default.
- W3044334416 modified "2023-10-10" @default.
- W3044334416 title "Incentive-Aware Recruitment of Intelligent Vehicles for Edge-Assisted Mobile Crowdsensing" @default.
- W3044334416 cites W1553085258 @default.
- W3044334416 cites W1593581747 @default.
- W3044334416 cites W1597217844 @default.
- W3044334416 cites W1680189815 @default.
- W3044334416 cites W1970756365 @default.
- W3044334416 cites W1976535029 @default.
- W3044334416 cites W2017990047 @default.
- W3044334416 cites W2026490835 @default.
- W3044334416 cites W2042461541 @default.
- W3044334416 cites W2048922650 @default.
- W3044334416 cites W2055029130 @default.
- W3044334416 cites W2059618043 @default.
- W3044334416 cites W2076742192 @default.
- W3044334416 cites W2079838248 @default.
- W3044334416 cites W2080379754 @default.
- W3044334416 cites W2088940490 @default.
- W3044334416 cites W2125486908 @default.
- W3044334416 cites W2152918251 @default.
- W3044334416 cites W2222341944 @default.
- W3044334416 cites W2315865805 @default.
- W3044334416 cites W2325012324 @default.
- W3044334416 cites W2416799949 @default.
- W3044334416 cites W2438328984 @default.
- W3044334416 cites W2513939141 @default.
- W3044334416 cites W2520503923 @default.
- W3044334416 cites W2562814954 @default.
- W3044334416 cites W2576765166 @default.
- W3044334416 cites W2585898937 @default.
- W3044334416 cites W2594644857 @default.
- W3044334416 cites W2606771750 @default.
- W3044334416 cites W2625826519 @default.
- W3044334416 cites W2644217638 @default.
- W3044334416 cites W2734506410 @default.
- W3044334416 cites W2746186158 @default.
- W3044334416 cites W2751904527 @default.
- W3044334416 cites W2778098513 @default.
- W3044334416 cites W2786309777 @default.
- W3044334416 cites W2790693132 @default.
- W3044334416 cites W2905052402 @default.
- W3044334416 cites W2918702320 @default.
- W3044334416 cites W2918716113 @default.
- W3044334416 cites W2951339484 @default.
- W3044334416 cites W2964048168 @default.
- W3044334416 cites W4250589301 @default.
- W3044334416 doi "https://doi.org/10.1109/tvt.2020.3011693" @default.
- W3044334416 hasPublicationYear "2020" @default.
- W3044334416 type Work @default.
- W3044334416 sameAs 3044334416 @default.
- W3044334416 citedByCount "14" @default.
- W3044334416 countsByYear W30443344162021 @default.
- W3044334416 countsByYear W30443344162022 @default.
- W3044334416 countsByYear W30443344162023 @default.
- W3044334416 crossrefType "journal-article" @default.
- W3044334416 hasAuthorship W3044334416A5000851572 @default.
- W3044334416 hasAuthorship W3044334416A5016162479 @default.
- W3044334416 hasAuthorship W3044334416A5019111566 @default.
- W3044334416 hasAuthorship W3044334416A5031412456 @default.
- W3044334416 hasAuthorship W3044334416A5071392558 @default.
- W3044334416 hasConcept C120314980 @default.
- W3044334416 hasConcept C126255220 @default.
- W3044334416 hasConcept C134306372 @default.
- W3044334416 hasConcept C136764020 @default.
- W3044334416 hasConcept C154945302 @default.
- W3044334416 hasConcept C162307627 @default.
- W3044334416 hasConcept C162324750 @default.
- W3044334416 hasConcept C173801870 @default.
- W3044334416 hasConcept C175444787 @default.
- W3044334416 hasConcept C177142836 @default.
- W3044334416 hasConcept C17744445 @default.
- W3044334416 hasConcept C178621042 @default.
- W3044334416 hasConcept C199539241 @default.
- W3044334416 hasConcept C19966478 @default.
- W3044334416 hasConcept C2776061582 @default.
- W3044334416 hasConcept C2778456923 @default.
- W3044334416 hasConcept C2778841147 @default.
- W3044334416 hasConcept C2780821482 @default.
- W3044334416 hasConcept C2781307350 @default.
- W3044334416 hasConcept C29122968 @default.
- W3044334416 hasConcept C31258907 @default.
- W3044334416 hasConcept C33923547 @default.
- W3044334416 hasConcept C38652104 @default.
- W3044334416 hasConcept C41008148 @default.
- W3044334416 hasConcept C46814582 @default.
- W3044334416 hasConcept C62230096 @default.
- W3044334416 hasConcept C77618280 @default.
- W3044334416 hasConcept C90509273 @default.
- W3044334416 hasConcept C95491727 @default.
- W3044334416 hasConceptScore W3044334416C120314980 @default.