Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044339716> ?p ?o ?g. }
- W3044339716 endingPage "4528" @default.
- W3044339716 startingPage "4506" @default.
- W3044339716 abstract "Predicting students’ academic performance has been a research area of interest in recent years, with many institutions focusing on improving the students’ performance and the education quality. The analysis and prediction of students’ performance can be achieved using various data mining techniques. Moreover, such techniques allow instructors to determine possible factors that may affect the students’ final marks. To that end, this work analyzes two different undergraduate datasets at two different universities. Furthermore, this work aims to predict the students’ performance at two stages of course delivery (20% and 50% respectively). This analysis allows for properly choosing the appropriate machine learning algorithms to use as well as optimize the algorithms’ parameters. Furthermore, this work adopts a systematic multi-split approach based on Gini index and p-value. This is done by optimizing a suitable bagging ensemble learner that is built from any combination of six potential base machine learning algorithms. It is shown through experimental results that the posited bagging ensemble models achieve high accuracy for the target group for both datasets." @default.
- W3044339716 created "2020-07-29" @default.
- W3044339716 creator A5002628427 @default.
- W3044339716 creator A5006496852 @default.
- W3044339716 creator A5022670644 @default.
- W3044339716 creator A5041270670 @default.
- W3044339716 date "2020-07-22" @default.
- W3044339716 modified "2023-10-05" @default.
- W3044339716 title "Multi-split optimized bagging ensemble model selection for multi-class educational data mining" @default.
- W3044339716 cites W1550861865 @default.
- W3044339716 cites W1562837045 @default.
- W3044339716 cites W1632356912 @default.
- W3044339716 cites W1831050183 @default.
- W3044339716 cites W1912982817 @default.
- W3044339716 cites W1978809719 @default.
- W3044339716 cites W1994024671 @default.
- W3044339716 cites W2002096058 @default.
- W3044339716 cites W2005104010 @default.
- W3044339716 cites W2017777062 @default.
- W3044339716 cites W2027711578 @default.
- W3044339716 cites W2032378334 @default.
- W3044339716 cites W2044233100 @default.
- W3044339716 cites W2079218151 @default.
- W3044339716 cites W2080803766 @default.
- W3044339716 cites W2083844448 @default.
- W3044339716 cites W2085576600 @default.
- W3044339716 cites W2086093608 @default.
- W3044339716 cites W2087070363 @default.
- W3044339716 cites W2089892729 @default.
- W3044339716 cites W2105284042 @default.
- W3044339716 cites W2114073252 @default.
- W3044339716 cites W2114703220 @default.
- W3044339716 cites W2123458117 @default.
- W3044339716 cites W2134148577 @default.
- W3044339716 cites W2150780222 @default.
- W3044339716 cites W2171562468 @default.
- W3044339716 cites W2280291775 @default.
- W3044339716 cites W2332912320 @default.
- W3044339716 cites W2468706984 @default.
- W3044339716 cites W2769912520 @default.
- W3044339716 cites W2773229007 @default.
- W3044339716 cites W2782516960 @default.
- W3044339716 cites W2793182069 @default.
- W3044339716 cites W2811048898 @default.
- W3044339716 cites W2883325838 @default.
- W3044339716 cites W2888509550 @default.
- W3044339716 cites W2889406945 @default.
- W3044339716 cites W3007898752 @default.
- W3044339716 cites W3009513989 @default.
- W3044339716 cites W3012289806 @default.
- W3044339716 cites W3022199973 @default.
- W3044339716 cites W3101647584 @default.
- W3044339716 cites W3117331835 @default.
- W3044339716 cites W3167724116 @default.
- W3044339716 cites W4244313837 @default.
- W3044339716 doi "https://doi.org/10.1007/s10489-020-01776-3" @default.
- W3044339716 hasPublicationYear "2020" @default.
- W3044339716 type Work @default.
- W3044339716 sameAs 3044339716 @default.
- W3044339716 citedByCount "35" @default.
- W3044339716 countsByYear W30443397162020 @default.
- W3044339716 countsByYear W30443397162021 @default.
- W3044339716 countsByYear W30443397162022 @default.
- W3044339716 countsByYear W30443397162023 @default.
- W3044339716 crossrefType "journal-article" @default.
- W3044339716 hasAuthorship W3044339716A5002628427 @default.
- W3044339716 hasAuthorship W3044339716A5006496852 @default.
- W3044339716 hasAuthorship W3044339716A5022670644 @default.
- W3044339716 hasAuthorship W3044339716A5041270670 @default.
- W3044339716 hasBestOaLocation W30443397162 @default.
- W3044339716 hasConcept C111472728 @default.
- W3044339716 hasConcept C119857082 @default.
- W3044339716 hasConcept C124101348 @default.
- W3044339716 hasConcept C127413603 @default.
- W3044339716 hasConcept C138885662 @default.
- W3044339716 hasConcept C154945302 @default.
- W3044339716 hasConcept C169258074 @default.
- W3044339716 hasConcept C18762648 @default.
- W3044339716 hasConcept C2777212361 @default.
- W3044339716 hasConcept C2777598771 @default.
- W3044339716 hasConcept C2779530757 @default.
- W3044339716 hasConcept C41008148 @default.
- W3044339716 hasConcept C45942800 @default.
- W3044339716 hasConcept C78519656 @default.
- W3044339716 hasConcept C81917197 @default.
- W3044339716 hasConceptScore W3044339716C111472728 @default.
- W3044339716 hasConceptScore W3044339716C119857082 @default.
- W3044339716 hasConceptScore W3044339716C124101348 @default.
- W3044339716 hasConceptScore W3044339716C127413603 @default.
- W3044339716 hasConceptScore W3044339716C138885662 @default.
- W3044339716 hasConceptScore W3044339716C154945302 @default.
- W3044339716 hasConceptScore W3044339716C169258074 @default.
- W3044339716 hasConceptScore W3044339716C18762648 @default.
- W3044339716 hasConceptScore W3044339716C2777212361 @default.
- W3044339716 hasConceptScore W3044339716C2777598771 @default.
- W3044339716 hasConceptScore W3044339716C2779530757 @default.
- W3044339716 hasConceptScore W3044339716C41008148 @default.
- W3044339716 hasConceptScore W3044339716C45942800 @default.