Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044450262> ?p ?o ?g. }
- W3044450262 endingPage "103351" @default.
- W3044450262 startingPage "103351" @default.
- W3044450262 abstract "Construction simulation is an effective tool to provide schedule plans. Vehicle speed is one of the most significant factors in earthwork construction simulation. However, neglecting the strong correlation with contextual factors, random distribution methods will lead to inaccurate prediction of vehicle speed. To address such issues, an improved extreme gradient boosting (XGBoost) approach to vehicle speed prediction is proposed for earthwork construction simulation. Firstly, to improve the global searching ability, an improved grey wolf optimization algorithm (IGWO) is put forward. Secondly, XGBoost is optimized by IGWO to construct an IGWO-XGBoost model. Then, the prediction model is embedded in the earthwork construction simulation model. The case study proves that the simulation results of the proposed method are more consistent with an actual construction schedule. It is expected that the vehicle speed prediction embedded into a simulation program facilitated an accurate development of schedule plan, thereby improving the efficiency of construction management." @default.
- W3044450262 created "2020-07-29" @default.
- W3044450262 creator A5002034014 @default.
- W3044450262 creator A5015378757 @default.
- W3044450262 creator A5021354392 @default.
- W3044450262 creator A5048358604 @default.
- W3044450262 creator A5053843140 @default.
- W3044450262 creator A5081844326 @default.
- W3044450262 date "2020-11-01" @default.
- W3044450262 modified "2023-10-13" @default.
- W3044450262 title "An improved extreme gradient boosting approach to vehicle speed prediction for construction simulation of earthwork" @default.
- W3044450262 cites W1493291675 @default.
- W3044450262 cites W1505704652 @default.
- W3044450262 cites W1706103706 @default.
- W3044450262 cites W1919362624 @default.
- W3044450262 cites W1966876972 @default.
- W3044450262 cites W1968424563 @default.
- W3044450262 cites W1977950491 @default.
- W3044450262 cites W1979491360 @default.
- W3044450262 cites W1980758619 @default.
- W3044450262 cites W1991775569 @default.
- W3044450262 cites W1993677782 @default.
- W3044450262 cites W1994130089 @default.
- W3044450262 cites W1996621593 @default.
- W3044450262 cites W1998852372 @default.
- W3044450262 cites W2000320692 @default.
- W3044450262 cites W2001833513 @default.
- W3044450262 cites W2004353783 @default.
- W3044450262 cites W2007954764 @default.
- W3044450262 cites W2019093252 @default.
- W3044450262 cites W2019191255 @default.
- W3044450262 cites W2036695573 @default.
- W3044450262 cites W2045153745 @default.
- W3044450262 cites W2050044094 @default.
- W3044450262 cites W2057538742 @default.
- W3044450262 cites W2061438946 @default.
- W3044450262 cites W2062389507 @default.
- W3044450262 cites W2065186919 @default.
- W3044450262 cites W2066635672 @default.
- W3044450262 cites W2074497712 @default.
- W3044450262 cites W2136966399 @default.
- W3044450262 cites W2154040933 @default.
- W3044450262 cites W2165991108 @default.
- W3044450262 cites W2169926376 @default.
- W3044450262 cites W2337756001 @default.
- W3044450262 cites W2547937424 @default.
- W3044450262 cites W2575125657 @default.
- W3044450262 cites W2593182953 @default.
- W3044450262 cites W2605394847 @default.
- W3044450262 cites W2724431948 @default.
- W3044450262 cites W2767385754 @default.
- W3044450262 cites W2775091303 @default.
- W3044450262 cites W2781682874 @default.
- W3044450262 cites W2781688929 @default.
- W3044450262 cites W2790945941 @default.
- W3044450262 cites W2793643983 @default.
- W3044450262 cites W2802595503 @default.
- W3044450262 cites W2808990700 @default.
- W3044450262 cites W2809124410 @default.
- W3044450262 cites W2837614072 @default.
- W3044450262 cites W2887517859 @default.
- W3044450262 cites W2890487029 @default.
- W3044450262 cites W2890672150 @default.
- W3044450262 cites W2897784558 @default.
- W3044450262 cites W2898006363 @default.
- W3044450262 cites W2898316671 @default.
- W3044450262 cites W2901469953 @default.
- W3044450262 cites W2907479996 @default.
- W3044450262 cites W2907508577 @default.
- W3044450262 cites W2907978107 @default.
- W3044450262 cites W2911964244 @default.
- W3044450262 cites W2913138152 @default.
- W3044450262 cites W2913267705 @default.
- W3044450262 cites W2920129369 @default.
- W3044450262 cites W2937257503 @default.
- W3044450262 cites W2956899931 @default.
- W3044450262 cites W2963418397 @default.
- W3044450262 cites W2975132213 @default.
- W3044450262 cites W2988829043 @default.
- W3044450262 cites W3003229405 @default.
- W3044450262 cites W95598545 @default.
- W3044450262 doi "https://doi.org/10.1016/j.autcon.2020.103351" @default.
- W3044450262 hasPublicationYear "2020" @default.
- W3044450262 type Work @default.
- W3044450262 sameAs 3044450262 @default.
- W3044450262 citedByCount "14" @default.
- W3044450262 countsByYear W30444502622021 @default.
- W3044450262 countsByYear W30444502622022 @default.
- W3044450262 countsByYear W30444502622023 @default.
- W3044450262 crossrefType "journal-article" @default.
- W3044450262 hasAuthorship W3044450262A5002034014 @default.
- W3044450262 hasAuthorship W3044450262A5015378757 @default.
- W3044450262 hasAuthorship W3044450262A5021354392 @default.
- W3044450262 hasAuthorship W3044450262A5048358604 @default.
- W3044450262 hasAuthorship W3044450262A5053843140 @default.
- W3044450262 hasAuthorship W3044450262A5081844326 @default.
- W3044450262 hasConcept C108215451 @default.
- W3044450262 hasConcept C111919701 @default.