Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044458085> ?p ?o ?g. }
- W3044458085 endingPage "103924" @default.
- W3044458085 startingPage "103924" @default.
- W3044458085 abstract "Hypertension (HPT) is a serious risk factor for cardiovascular disease and if not controlled in the early stage, can lead to serious complications. Long-standing HPT can induce heart muscle hypertrophy which will be reflected on electrocardiography (ECG). However, early stage of HPT may have no clinically discernible ECG perturbations, and is difficult to diagnose manually from the standard ECG. Hence, we propose an automated ECG based system that can automatically detect the ECG changes in the early stages of HPT. This work is based on ECG signals obtained from 139 HPT patients (SHAREE database) and 52 healthy subjects (PTB database). The ECG signal is non-stationary with relatively short duration, and rhythmic. Two-band optimal bi-orthogonal wavelet filter bank (BOWFB) and machine learning are used to automatically diagnose low, high-risk hypertension, and healthy control using ECG signals. Five-level wavelet decomposition is used to produce six sub-bands (SBs) from each ECG signal using BOWFB. Sample and wavelet entropy features are calculated for all six SBs. The features calculated SBs are fed to the k-nearest neighbor (KNN), support vector machine (SVM), and ensemble bagged trees (EBT) classifiers. In this work, we have obtained the highest average classification accuracy of 99.95% and area under the curve of 1.00 using EBT classifier in classifying healthy control (HC), low-risk hypertension (LRHPT) and high-risk hypertension (HRHPT) classes with ten-fold cross validation strategy. Hence the developed system can be used in clinics, or even in remote detection of HPT stages using ECG signals." @default.
- W3044458085 created "2020-07-29" @default.
- W3044458085 creator A5005600654 @default.
- W3044458085 creator A5027649343 @default.
- W3044458085 creator A5045783666 @default.
- W3044458085 creator A5057990837 @default.
- W3044458085 date "2020-08-01" @default.
- W3044458085 modified "2023-09-26" @default.
- W3044458085 title "Automated detection of severity of hypertension ECG signals using an optimal bi-orthogonal wavelet filter bank" @default.
- W3044458085 cites W1940668502 @default.
- W3044458085 cites W1986989640 @default.
- W3044458085 cites W2049270185 @default.
- W3044458085 cites W2061272711 @default.
- W3044458085 cites W2154233447 @default.
- W3044458085 cites W2168113819 @default.
- W3044458085 cites W2232157279 @default.
- W3044458085 cites W2556445044 @default.
- W3044458085 cites W2565200039 @default.
- W3044458085 cites W2565892404 @default.
- W3044458085 cites W2598587204 @default.
- W3044458085 cites W2604383457 @default.
- W3044458085 cites W2616358596 @default.
- W3044458085 cites W2745699887 @default.
- W3044458085 cites W2796697326 @default.
- W3044458085 cites W2802503051 @default.
- W3044458085 cites W2809558661 @default.
- W3044458085 cites W2884483862 @default.
- W3044458085 cites W2884790510 @default.
- W3044458085 cites W2884795774 @default.
- W3044458085 cites W2890628112 @default.
- W3044458085 cites W2914838500 @default.
- W3044458085 cites W2919115771 @default.
- W3044458085 cites W2919793218 @default.
- W3044458085 cites W2923821914 @default.
- W3044458085 cites W2941208518 @default.
- W3044458085 cites W2944062336 @default.
- W3044458085 cites W2944689333 @default.
- W3044458085 cites W2963568316 @default.
- W3044458085 cites W2969570476 @default.
- W3044458085 cites W2974652413 @default.
- W3044458085 cites W2982266845 @default.
- W3044458085 cites W2991232928 @default.
- W3044458085 cites W2997941810 @default.
- W3044458085 cites W3003897869 @default.
- W3044458085 cites W3011654399 @default.
- W3044458085 cites W3013966144 @default.
- W3044458085 doi "https://doi.org/10.1016/j.compbiomed.2020.103924" @default.
- W3044458085 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32768053" @default.
- W3044458085 hasPublicationYear "2020" @default.
- W3044458085 type Work @default.
- W3044458085 sameAs 3044458085 @default.
- W3044458085 citedByCount "31" @default.
- W3044458085 countsByYear W30444580852020 @default.
- W3044458085 countsByYear W30444580852021 @default.
- W3044458085 countsByYear W30444580852022 @default.
- W3044458085 countsByYear W30444580852023 @default.
- W3044458085 crossrefType "journal-article" @default.
- W3044458085 hasAuthorship W3044458085A5005600654 @default.
- W3044458085 hasAuthorship W3044458085A5027649343 @default.
- W3044458085 hasAuthorship W3044458085A5045783666 @default.
- W3044458085 hasAuthorship W3044458085A5057990837 @default.
- W3044458085 hasConcept C100515483 @default.
- W3044458085 hasConcept C106131492 @default.
- W3044458085 hasConcept C12267149 @default.
- W3044458085 hasConcept C126322002 @default.
- W3044458085 hasConcept C153180895 @default.
- W3044458085 hasConcept C154945302 @default.
- W3044458085 hasConcept C164705383 @default.
- W3044458085 hasConcept C196216189 @default.
- W3044458085 hasConcept C2776002628 @default.
- W3044458085 hasConcept C2780040984 @default.
- W3044458085 hasConcept C31972630 @default.
- W3044458085 hasConcept C41008148 @default.
- W3044458085 hasConcept C47432892 @default.
- W3044458085 hasConcept C66696666 @default.
- W3044458085 hasConcept C71924100 @default.
- W3044458085 hasConcept C84393581 @default.
- W3044458085 hasConceptScore W3044458085C100515483 @default.
- W3044458085 hasConceptScore W3044458085C106131492 @default.
- W3044458085 hasConceptScore W3044458085C12267149 @default.
- W3044458085 hasConceptScore W3044458085C126322002 @default.
- W3044458085 hasConceptScore W3044458085C153180895 @default.
- W3044458085 hasConceptScore W3044458085C154945302 @default.
- W3044458085 hasConceptScore W3044458085C164705383 @default.
- W3044458085 hasConceptScore W3044458085C196216189 @default.
- W3044458085 hasConceptScore W3044458085C2776002628 @default.
- W3044458085 hasConceptScore W3044458085C2780040984 @default.
- W3044458085 hasConceptScore W3044458085C31972630 @default.
- W3044458085 hasConceptScore W3044458085C41008148 @default.
- W3044458085 hasConceptScore W3044458085C47432892 @default.
- W3044458085 hasConceptScore W3044458085C66696666 @default.
- W3044458085 hasConceptScore W3044458085C71924100 @default.
- W3044458085 hasConceptScore W3044458085C84393581 @default.
- W3044458085 hasLocation W30444580851 @default.
- W3044458085 hasOpenAccess W3044458085 @default.
- W3044458085 hasPrimaryLocation W30444580851 @default.
- W3044458085 hasRelatedWork W1809875158 @default.
- W3044458085 hasRelatedWork W2098466859 @default.