Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044473374> ?p ?o ?g. }
- W3044473374 endingPage "103688" @default.
- W3044473374 startingPage "103688" @default.
- W3044473374 abstract "When seawater intrudes into a subterranean estuary, there is interaction between groundwater and surface water, and ocean tides and waves can influence the salt concentration distribution in subsurface of the estuary. However, numerical simulations of seawater intrusion into a subterranean estuary often neglect the atmosphere and surface water and simply specify hydrostatic pressure and a constant seawater salt concentration. This study examined the influence of fluid flow and pressure in a surface water-atmosphere system consisting of both atmosphere and surface water on the salt distribution in subsurface and in the surface water by a numerical simulation that couples fluid flows in the surface water-atmosphere system and groundwater. This study first confirmed the precision of the simulation method by comparing experimentally determined salt concentration distributions in silica beads unsaturated with water. This study then conducted an experiment in a two-dimensional tank filled with seawater and glass beads (mean diameter 0.2 mm) and carried out two simulations of this tank experiment: one of a limited system consisting of the porous medium and surface water only, and the other of a full system, consisting of the porous medium, surface water, and atmosphere. Darcy's law has frequently been applied in limited system simulations by assigning extremely high permeability to the surface water. This study therefore also conducted a third, simpler numerical simulation of the limited system that used only Darcy's law. The salt concentration distribution obtained by the full system simulation was closer to the experimental distribution than that obtained by the limited system simulation. This result implies that fluid flow and pressure in both the atmosphere and surface water influence water flow and water pressure in the porous medium. Furthermore, the third simulation using Darcy's law only could not precisely reproduce flow in the surface water. Therefore, when variable-density flow in surface water and a shallow subsurface are numerically simulated, the simulation system needs to include atmosphere and surface water to take account of the influence of fluid flow and fluid pressure in both the atmosphere and surface water on the fluid flow and transport of salt in a shallow subsurface. • The ASGMF method was validated by a 2-D tank experiment of seawater intrusion. • ASGMF could reproduce variable-density flow in a groundwater–surface water system. • Atmosphere and surface water flows influenced subsurface salt concentrations." @default.
- W3044473374 created "2020-07-29" @default.
- W3044473374 creator A5083675133 @default.
- W3044473374 date "2020-10-01" @default.
- W3044473374 modified "2023-09-24" @default.
- W3044473374 title "Modeling variable density flow in subsurface and surface water in the vicinity of the boundary between a surface water–atmosphere system and the subsurface" @default.
- W3044473374 cites W1487821612 @default.
- W3044473374 cites W1504388367 @default.
- W3044473374 cites W1541597053 @default.
- W3044473374 cites W1664296928 @default.
- W3044473374 cites W1766964687 @default.
- W3044473374 cites W1938344905 @default.
- W3044473374 cites W1968608215 @default.
- W3044473374 cites W1969431983 @default.
- W3044473374 cites W1970810544 @default.
- W3044473374 cites W1976907051 @default.
- W3044473374 cites W1979389429 @default.
- W3044473374 cites W1991840154 @default.
- W3044473374 cites W2002441742 @default.
- W3044473374 cites W2025967761 @default.
- W3044473374 cites W2026020073 @default.
- W3044473374 cites W2028542434 @default.
- W3044473374 cites W2030893208 @default.
- W3044473374 cites W2048568378 @default.
- W3044473374 cites W2062478360 @default.
- W3044473374 cites W2069601056 @default.
- W3044473374 cites W2076092564 @default.
- W3044473374 cites W2081226039 @default.
- W3044473374 cites W2088548845 @default.
- W3044473374 cites W2100969493 @default.
- W3044473374 cites W2125610241 @default.
- W3044473374 cites W2127801224 @default.
- W3044473374 cites W2147171123 @default.
- W3044473374 cites W2162604832 @default.
- W3044473374 cites W2166989932 @default.
- W3044473374 cites W2198723873 @default.
- W3044473374 cites W2199446113 @default.
- W3044473374 cites W2333348712 @default.
- W3044473374 cites W2465916300 @default.
- W3044473374 cites W2919673769 @default.
- W3044473374 cites W3033690313 @default.
- W3044473374 cites W972416847 @default.
- W3044473374 doi "https://doi.org/10.1016/j.jconhyd.2020.103688" @default.
- W3044473374 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32745797" @default.
- W3044473374 hasPublicationYear "2020" @default.
- W3044473374 type Work @default.
- W3044473374 sameAs 3044473374 @default.
- W3044473374 citedByCount "1" @default.
- W3044473374 countsByYear W30444733742022 @default.
- W3044473374 crossrefType "journal-article" @default.
- W3044473374 hasAuthorship W3044473374A5083675133 @default.
- W3044473374 hasConcept C100187453 @default.
- W3044473374 hasConcept C102579867 @default.
- W3044473374 hasConcept C111368507 @default.
- W3044473374 hasConcept C121332964 @default.
- W3044473374 hasConcept C127313418 @default.
- W3044473374 hasConcept C131227075 @default.
- W3044473374 hasConcept C153294291 @default.
- W3044473374 hasConcept C159390177 @default.
- W3044473374 hasConcept C187320778 @default.
- W3044473374 hasConcept C197248824 @default.
- W3044473374 hasConcept C2910081258 @default.
- W3044473374 hasConcept C2988574769 @default.
- W3044473374 hasConcept C39432304 @default.
- W3044473374 hasConcept C57879066 @default.
- W3044473374 hasConcept C65440619 @default.
- W3044473374 hasConcept C75622301 @default.
- W3044473374 hasConcept C76177295 @default.
- W3044473374 hasConcept C76886044 @default.
- W3044473374 hasConcept C8625798 @default.
- W3044473374 hasConcept C87717796 @default.
- W3044473374 hasConceptScore W3044473374C100187453 @default.
- W3044473374 hasConceptScore W3044473374C102579867 @default.
- W3044473374 hasConceptScore W3044473374C111368507 @default.
- W3044473374 hasConceptScore W3044473374C121332964 @default.
- W3044473374 hasConceptScore W3044473374C127313418 @default.
- W3044473374 hasConceptScore W3044473374C131227075 @default.
- W3044473374 hasConceptScore W3044473374C153294291 @default.
- W3044473374 hasConceptScore W3044473374C159390177 @default.
- W3044473374 hasConceptScore W3044473374C187320778 @default.
- W3044473374 hasConceptScore W3044473374C197248824 @default.
- W3044473374 hasConceptScore W3044473374C2910081258 @default.
- W3044473374 hasConceptScore W3044473374C2988574769 @default.
- W3044473374 hasConceptScore W3044473374C39432304 @default.
- W3044473374 hasConceptScore W3044473374C57879066 @default.
- W3044473374 hasConceptScore W3044473374C65440619 @default.
- W3044473374 hasConceptScore W3044473374C75622301 @default.
- W3044473374 hasConceptScore W3044473374C76177295 @default.
- W3044473374 hasConceptScore W3044473374C76886044 @default.
- W3044473374 hasConceptScore W3044473374C8625798 @default.
- W3044473374 hasConceptScore W3044473374C87717796 @default.
- W3044473374 hasLocation W30444733741 @default.
- W3044473374 hasOpenAccess W3044473374 @default.
- W3044473374 hasPrimaryLocation W30444733741 @default.
- W3044473374 hasRelatedWork W1484539862 @default.
- W3044473374 hasRelatedWork W1639335045 @default.
- W3044473374 hasRelatedWork W1980205985 @default.
- W3044473374 hasRelatedWork W2051969510 @default.