Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044502017> ?p ?o ?g. }
- W3044502017 endingPage "11" @default.
- W3044502017 startingPage "1" @default.
- W3044502017 abstract "Surface wear, which is most likely to occur in early damage of wire ropes (WRs), is a serious threat to WR safety. Visual perception technology (VPT) can intuitively grasp the surface damage situation of WRs. However, efficient detection of WR surface damage from complex morphological characteristics using VPT has always been a challenging task, and there are various problems, such as nonstandard data, low automation/intelligence, and poor detection effect. To overcome the above difficulties, this study proposes a deep learning-based VPT framework, which relies on an image preprocessing (IP) scheme and a deep convolutional neural network (DCNN), called WR-IPDCNN. The IP scheme is designed to remove the influence of the image background and to normalize data, including posture adjustment and region of interest (ROI) extraction. The improved DCNN based on LeNet-5 is proposed to mine the newly established WR data set, which considers different working conditions. Experimental results demonstrate that the proposed framework can accurately extract the ROI area of WR images and achieve 95.55% detection accuracy, which is 12.44% higher than LeNet-5, and a significant improvement on the automation/intelligence level in this field." @default.
- W3044502017 created "2020-07-29" @default.
- W3044502017 creator A5001930376 @default.
- W3044502017 creator A5010979147 @default.
- W3044502017 creator A5071640624 @default.
- W3044502017 creator A5072388859 @default.
- W3044502017 creator A5082826235 @default.
- W3044502017 date "2021-01-01" @default.
- W3044502017 modified "2023-10-18" @default.
- W3044502017 title "Automatic Detection of Industrial Wire Rope Surface Damage Using Deep Learning-Based Visual Perception Technology" @default.
- W3044502017 cites W1480498363 @default.
- W3044502017 cites W2045152659 @default.
- W3044502017 cites W2051612066 @default.
- W3044502017 cites W2062326173 @default.
- W3044502017 cites W2098054201 @default.
- W3044502017 cites W2113278950 @default.
- W3044502017 cites W2120082031 @default.
- W3044502017 cites W2155879733 @default.
- W3044502017 cites W2236636307 @default.
- W3044502017 cites W2258038090 @default.
- W3044502017 cites W2343086726 @default.
- W3044502017 cites W2404692435 @default.
- W3044502017 cites W2552392885 @default.
- W3044502017 cites W2590288147 @default.
- W3044502017 cites W2595209304 @default.
- W3044502017 cites W2761216034 @default.
- W3044502017 cites W2765854388 @default.
- W3044502017 cites W2768753204 @default.
- W3044502017 cites W2770551511 @default.
- W3044502017 cites W2772386856 @default.
- W3044502017 cites W2775465287 @default.
- W3044502017 cites W2777206593 @default.
- W3044502017 cites W2790914279 @default.
- W3044502017 cites W2791643376 @default.
- W3044502017 cites W2801934172 @default.
- W3044502017 cites W2808496542 @default.
- W3044502017 cites W2810292802 @default.
- W3044502017 cites W2883194860 @default.
- W3044502017 cites W2896628614 @default.
- W3044502017 cites W2899252373 @default.
- W3044502017 cites W2902497325 @default.
- W3044502017 cites W2902790703 @default.
- W3044502017 cites W2919115771 @default.
- W3044502017 cites W2920311927 @default.
- W3044502017 cites W2950119225 @default.
- W3044502017 cites W2966341653 @default.
- W3044502017 cites W2969651160 @default.
- W3044502017 cites W2991620669 @default.
- W3044502017 cites W2998291476 @default.
- W3044502017 cites W2998506103 @default.
- W3044502017 cites W3048978826 @default.
- W3044502017 doi "https://doi.org/10.1109/tim.2020.3011762" @default.
- W3044502017 hasPublicationYear "2021" @default.
- W3044502017 type Work @default.
- W3044502017 sameAs 3044502017 @default.
- W3044502017 citedByCount "12" @default.
- W3044502017 countsByYear W30445020172021 @default.
- W3044502017 countsByYear W30445020172022 @default.
- W3044502017 countsByYear W30445020172023 @default.
- W3044502017 crossrefType "journal-article" @default.
- W3044502017 hasAuthorship W3044502017A5001930376 @default.
- W3044502017 hasAuthorship W3044502017A5010979147 @default.
- W3044502017 hasAuthorship W3044502017A5071640624 @default.
- W3044502017 hasAuthorship W3044502017A5072388859 @default.
- W3044502017 hasAuthorship W3044502017A5082826235 @default.
- W3044502017 hasConcept C108583219 @default.
- W3044502017 hasConcept C115901376 @default.
- W3044502017 hasConcept C127413603 @default.
- W3044502017 hasConcept C153180895 @default.
- W3044502017 hasConcept C154945302 @default.
- W3044502017 hasConcept C169760540 @default.
- W3044502017 hasConcept C171268870 @default.
- W3044502017 hasConcept C199360897 @default.
- W3044502017 hasConcept C201995342 @default.
- W3044502017 hasConcept C26760741 @default.
- W3044502017 hasConcept C2780451532 @default.
- W3044502017 hasConcept C31972630 @default.
- W3044502017 hasConcept C34736171 @default.
- W3044502017 hasConcept C41008148 @default.
- W3044502017 hasConcept C52622490 @default.
- W3044502017 hasConcept C78519656 @default.
- W3044502017 hasConcept C81363708 @default.
- W3044502017 hasConcept C86803240 @default.
- W3044502017 hasConceptScore W3044502017C108583219 @default.
- W3044502017 hasConceptScore W3044502017C115901376 @default.
- W3044502017 hasConceptScore W3044502017C127413603 @default.
- W3044502017 hasConceptScore W3044502017C153180895 @default.
- W3044502017 hasConceptScore W3044502017C154945302 @default.
- W3044502017 hasConceptScore W3044502017C169760540 @default.
- W3044502017 hasConceptScore W3044502017C171268870 @default.
- W3044502017 hasConceptScore W3044502017C199360897 @default.
- W3044502017 hasConceptScore W3044502017C201995342 @default.
- W3044502017 hasConceptScore W3044502017C26760741 @default.
- W3044502017 hasConceptScore W3044502017C2780451532 @default.
- W3044502017 hasConceptScore W3044502017C31972630 @default.
- W3044502017 hasConceptScore W3044502017C34736171 @default.
- W3044502017 hasConceptScore W3044502017C41008148 @default.
- W3044502017 hasConceptScore W3044502017C52622490 @default.