Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044644239> ?p ?o ?g. }
- W3044644239 endingPage "4083" @default.
- W3044644239 startingPage "4083" @default.
- W3044644239 abstract "Optimizations in logistics require recognition and analysis of human activities. The potential of sensor-based human activity recognition (HAR) in logistics is not yet well explored. Despite a significant increase in HAR datasets in the past twenty years, no available dataset depicts activities in logistics. This contribution presents the first freely accessible logistics-dataset. In the ’Innovationlab Hybrid Services in Logistics’ at TU Dortmund University, two picking and one packing scenarios were recreated. Fourteen subjects were recorded individually when performing warehousing activities using Optical marker-based Motion Capture (OMoCap), inertial measurement units (IMUs), and an RGB camera. A total of 758 min of recordings were labeled by 12 annotators in 474 person-h. All the given data have been labeled and categorized into 8 activity classes and 19 binary coarse-semantic descriptions, also called attributes. The dataset is deployed for solving HAR using deep networks." @default.
- W3044644239 created "2020-07-29" @default.
- W3044644239 creator A5022250044 @default.
- W3044644239 creator A5048407937 @default.
- W3044644239 creator A5067857977 @default.
- W3044644239 creator A5068918618 @default.
- W3044644239 creator A5077762931 @default.
- W3044644239 creator A5079280711 @default.
- W3044644239 creator A5084495046 @default.
- W3044644239 date "2020-07-22" @default.
- W3044644239 modified "2023-10-02" @default.
- W3044644239 title "LARa: Creating a Dataset for Human Activity Recognition in Logistics Using Semantic Attributes" @default.
- W3044644239 cites W1487977235 @default.
- W3044644239 cites W1598741436 @default.
- W3044644239 cites W1689099703 @default.
- W3044644239 cites W1980110527 @default.
- W3044644239 cites W1989496527 @default.
- W3044644239 cites W2002261403 @default.
- W3044644239 cites W2017634428 @default.
- W3044644239 cites W2023302299 @default.
- W3044644239 cites W2023688148 @default.
- W3044644239 cites W2024523156 @default.
- W3044644239 cites W2026297770 @default.
- W3044644239 cites W2035831067 @default.
- W3044644239 cites W2057907879 @default.
- W3044644239 cites W2062228543 @default.
- W3044644239 cites W2090805767 @default.
- W3044644239 cites W2099333815 @default.
- W3044644239 cites W2104761648 @default.
- W3044644239 cites W2106956101 @default.
- W3044644239 cites W2121296644 @default.
- W3044644239 cites W2124493593 @default.
- W3044644239 cites W2126511896 @default.
- W3044644239 cites W2128892560 @default.
- W3044644239 cites W2129793335 @default.
- W3044644239 cites W2134243564 @default.
- W3044644239 cites W2134294054 @default.
- W3044644239 cites W2134524950 @default.
- W3044644239 cites W2144348409 @default.
- W3044644239 cites W2145343602 @default.
- W3044644239 cites W2146291834 @default.
- W3044644239 cites W2157091296 @default.
- W3044644239 cites W2158690549 @default.
- W3044644239 cites W2201675152 @default.
- W3044644239 cites W2203630559 @default.
- W3044644239 cites W2206426646 @default.
- W3044644239 cites W2219995598 @default.
- W3044644239 cites W2270470215 @default.
- W3044644239 cites W2274123190 @default.
- W3044644239 cites W2296311849 @default.
- W3044644239 cites W2304267454 @default.
- W3044644239 cites W2311161367 @default.
- W3044644239 cites W2338606426 @default.
- W3044644239 cites W2345270026 @default.
- W3044644239 cites W2467788448 @default.
- W3044644239 cites W2516178576 @default.
- W3044644239 cites W2543632018 @default.
- W3044644239 cites W2555209581 @default.
- W3044644239 cites W2590146393 @default.
- W3044644239 cites W2605526053 @default.
- W3044644239 cites W2620371446 @default.
- W3044644239 cites W2735430014 @default.
- W3044644239 cites W2751594996 @default.
- W3044644239 cites W2754534665 @default.
- W3044644239 cites W2759013978 @default.
- W3044644239 cites W2768329905 @default.
- W3044644239 cites W2783192928 @default.
- W3044644239 cites W2790414609 @default.
- W3044644239 cites W2803675191 @default.
- W3044644239 cites W2804113469 @default.
- W3044644239 cites W2887886819 @default.
- W3044644239 cites W2891539715 @default.
- W3044644239 cites W2894476424 @default.
- W3044644239 cites W2912157499 @default.
- W3044644239 cites W2941398656 @default.
- W3044644239 cites W2962182608 @default.
- W3044644239 cites W2962728655 @default.
- W3044644239 cites W2963373106 @default.
- W3044644239 cites W2973970174 @default.
- W3044644239 cites W3029155803 @default.
- W3044644239 cites W3208920280 @default.
- W3044644239 cites W4231228358 @default.
- W3044644239 cites W4239511627 @default.
- W3044644239 doi "https://doi.org/10.3390/s20154083" @default.
- W3044644239 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7436169" @default.
- W3044644239 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32707928" @default.
- W3044644239 hasPublicationYear "2020" @default.
- W3044644239 type Work @default.
- W3044644239 sameAs 3044644239 @default.
- W3044644239 citedByCount "25" @default.
- W3044644239 countsByYear W30446442392020 @default.
- W3044644239 countsByYear W30446442392021 @default.
- W3044644239 countsByYear W30446442392022 @default.
- W3044644239 countsByYear W30446442392023 @default.
- W3044644239 crossrefType "journal-article" @default.
- W3044644239 hasAuthorship W3044644239A5022250044 @default.
- W3044644239 hasAuthorship W3044644239A5048407937 @default.
- W3044644239 hasAuthorship W3044644239A5067857977 @default.