Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044651132> ?p ?o ?g. }
- W3044651132 endingPage "2107" @default.
- W3044651132 startingPage "2107" @default.
- W3044651132 abstract "Reliable simulation of seawater intrusion (SI) is necessary for sustainable groundwater utilization. As a powerful tool, feedforward neural network (FNN) was applied to study seawater intrusion area (SIA) fluctuations in Longkou, China. In the present study, changes of groundwater level (GWL) were modeled by FNN Model 1. Then, FNN Model 2 was developed for fitting the relationship between GWL and SIA. Finally, two models were integrated to simulate SIA changes in response to climatic and artificial factors. The sensitivity analysis of each impact factor was conducted by the “stepwise” method to quantify the relative importance for SIA and GWL. The results from the integrated model indicated that this method could accurately reproduce SIA fluctuations when the Nash–Sutcliffe efficiency coefficient was 0.964, the root mean square error was 1.052 km2, the correlation coefficient was 0.983, and the mean absolute error was 0.782 km2. The results of sensitivity analysis prove that precipitation and groundwater pumping for agriculture mainly affect fluctuations of SIA in the study area. It can be concluded that FNN is effectively used for modeling SI fluctuations together with GWL, which can provide enough support for the sustainable management of groundwater resources with consideration of crucial impact factors of seawater intrusion (SI)." @default.
- W3044651132 created "2020-07-29" @default.
- W3044651132 creator A5009111424 @default.
- W3044651132 creator A5011380793 @default.
- W3044651132 creator A5017859996 @default.
- W3044651132 creator A5026331939 @default.
- W3044651132 creator A5037570916 @default.
- W3044651132 creator A5041603514 @default.
- W3044651132 creator A5075251380 @default.
- W3044651132 date "2020-07-24" @default.
- W3044651132 modified "2023-10-16" @default.
- W3044651132 title "Simulation of Seawater Intrusion Area Using Feedforward Neural Network in Longkou, China" @default.
- W3044651132 cites W1498040713 @default.
- W3044651132 cites W1502335261 @default.
- W3044651132 cites W1518010084 @default.
- W3044651132 cites W1867513930 @default.
- W3044651132 cites W1969399508 @default.
- W3044651132 cites W1969431983 @default.
- W3044651132 cites W1972057708 @default.
- W3044651132 cites W1974250802 @default.
- W3044651132 cites W1983327980 @default.
- W3044651132 cites W1988104323 @default.
- W3044651132 cites W1995609408 @default.
- W3044651132 cites W1995847591 @default.
- W3044651132 cites W1999489036 @default.
- W3044651132 cites W2007131462 @default.
- W3044651132 cites W2008090122 @default.
- W3044651132 cites W2015788898 @default.
- W3044651132 cites W2017766247 @default.
- W3044651132 cites W2021636915 @default.
- W3044651132 cites W2028542434 @default.
- W3044651132 cites W2041087060 @default.
- W3044651132 cites W2041534329 @default.
- W3044651132 cites W2045767380 @default.
- W3044651132 cites W2047279567 @default.
- W3044651132 cites W2051687709 @default.
- W3044651132 cites W2068743096 @default.
- W3044651132 cites W2070761092 @default.
- W3044651132 cites W2074770406 @default.
- W3044651132 cites W2079489373 @default.
- W3044651132 cites W2080892445 @default.
- W3044651132 cites W2083165076 @default.
- W3044651132 cites W2097408162 @default.
- W3044651132 cites W2116422023 @default.
- W3044651132 cites W2137644833 @default.
- W3044651132 cites W2146845677 @default.
- W3044651132 cites W2165313910 @default.
- W3044651132 cites W2172724430 @default.
- W3044651132 cites W2523735157 @default.
- W3044651132 cites W2893082324 @default.
- W3044651132 cites W2900622526 @default.
- W3044651132 cites W2907048372 @default.
- W3044651132 cites W2907891425 @default.
- W3044651132 cites W2996139122 @default.
- W3044651132 cites W3005635519 @default.
- W3044651132 cites W3008366654 @default.
- W3044651132 cites W3017323153 @default.
- W3044651132 cites W3018770027 @default.
- W3044651132 cites W3024725378 @default.
- W3044651132 doi "https://doi.org/10.3390/w12082107" @default.
- W3044651132 hasPublicationYear "2020" @default.
- W3044651132 type Work @default.
- W3044651132 sameAs 3044651132 @default.
- W3044651132 citedByCount "3" @default.
- W3044651132 countsByYear W30446511322022 @default.
- W3044651132 countsByYear W30446511322023 @default.
- W3044651132 crossrefType "journal-article" @default.
- W3044651132 hasAuthorship W3044651132A5009111424 @default.
- W3044651132 hasAuthorship W3044651132A5011380793 @default.
- W3044651132 hasAuthorship W3044651132A5017859996 @default.
- W3044651132 hasAuthorship W3044651132A5026331939 @default.
- W3044651132 hasAuthorship W3044651132A5037570916 @default.
- W3044651132 hasAuthorship W3044651132A5041603514 @default.
- W3044651132 hasAuthorship W3044651132A5075251380 @default.
- W3044651132 hasBestOaLocation W30446511321 @default.
- W3044651132 hasConcept C105795698 @default.
- W3044651132 hasConcept C107054158 @default.
- W3044651132 hasConcept C111368507 @default.
- W3044651132 hasConcept C119857082 @default.
- W3044651132 hasConcept C121332964 @default.
- W3044651132 hasConcept C127313418 @default.
- W3044651132 hasConcept C127413603 @default.
- W3044651132 hasConcept C133731056 @default.
- W3044651132 hasConcept C139945424 @default.
- W3044651132 hasConcept C153294291 @default.
- W3044651132 hasConcept C159390177 @default.
- W3044651132 hasConcept C187320778 @default.
- W3044651132 hasConcept C197248824 @default.
- W3044651132 hasConcept C21200559 @default.
- W3044651132 hasConcept C24326235 @default.
- W3044651132 hasConcept C2780092901 @default.
- W3044651132 hasConcept C2991897412 @default.
- W3044651132 hasConcept C33923547 @default.
- W3044651132 hasConcept C38858127 @default.
- W3044651132 hasConcept C39432304 @default.
- W3044651132 hasConcept C41008148 @default.
- W3044651132 hasConcept C47702885 @default.
- W3044651132 hasConcept C50644808 @default.