Matches in SemOpenAlex for { <https://semopenalex.org/work/W3044652285> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3044652285 abstract "In recent years, machine learning and deep learning have become popular methods for financial data analysis, including financial textual data, numerical data, and graphical data. This paper proposes to use sentiment analysis to extract useful information from multiple textual data sources and a blending ensemble deep learning model to predict future stock movement. The blending ensemble model contains two levels. The first level contains two Recurrent Neural Networks (RNNs), one Long-Short Term Memory network (LSTM) and one Gated Recurrent Units network (GRU), followed by a fully connected neural network as the second level model. The RNNs, LSTM, and GRU models can effectively capture the time-series events in the input data, and the fully connected neural network is used to ensemble several individual prediction results to further improve the prediction accuracy. The purpose of this work is to explain our design philosophy and show that ensemble deep learning technologies can truly predict future stock price trends more effectively and can better assist investors in making the right investment decision than other traditional methods." @default.
- W3044652285 created "2020-07-29" @default.
- W3044652285 creator A5009977767 @default.
- W3044652285 creator A5064842058 @default.
- W3044652285 date "2020-07-23" @default.
- W3044652285 modified "2023-09-27" @default.
- W3044652285 title "A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock Prices and News" @default.
- W3044652285 cites W1496934729 @default.
- W3044652285 cites W1534477342 @default.
- W3044652285 cites W1560739766 @default.
- W3044652285 cites W1751998797 @default.
- W3044652285 cites W1924770834 @default.
- W3044652285 cites W2064675550 @default.
- W3044652285 cites W2071934013 @default.
- W3044652285 cites W2099813784 @default.
- W3044652285 cites W2110242546 @default.
- W3044652285 cites W2121863487 @default.
- W3044652285 cites W2122026259 @default.
- W3044652285 cites W2126267628 @default.
- W3044652285 cites W2172140247 @default.
- W3044652285 cites W2510046892 @default.
- W3044652285 cites W2585092264 @default.
- W3044652285 cites W2769525524 @default.
- W3044652285 cites W2789464212 @default.
- W3044652285 cites W2995421442 @default.
- W3044652285 cites W3016486868 @default.
- W3044652285 cites W3038844667 @default.
- W3044652285 cites W3122551571 @default.
- W3044652285 cites W3125169053 @default.
- W3044652285 doi "https://doi.org/10.48550/arxiv.2007.12620" @default.
- W3044652285 hasPublicationYear "2020" @default.
- W3044652285 type Work @default.
- W3044652285 sameAs 3044652285 @default.
- W3044652285 citedByCount "1" @default.
- W3044652285 countsByYear W30446522852021 @default.
- W3044652285 crossrefType "posted-content" @default.
- W3044652285 hasAuthorship W3044652285A5009977767 @default.
- W3044652285 hasAuthorship W3044652285A5064842058 @default.
- W3044652285 hasBestOaLocation W30446522851 @default.
- W3044652285 hasConcept C108583219 @default.
- W3044652285 hasConcept C119857082 @default.
- W3044652285 hasConcept C119898033 @default.
- W3044652285 hasConcept C127413603 @default.
- W3044652285 hasConcept C133488467 @default.
- W3044652285 hasConcept C143724316 @default.
- W3044652285 hasConcept C147168706 @default.
- W3044652285 hasConcept C151406439 @default.
- W3044652285 hasConcept C151730666 @default.
- W3044652285 hasConcept C154945302 @default.
- W3044652285 hasConcept C204036174 @default.
- W3044652285 hasConcept C2988984586 @default.
- W3044652285 hasConcept C41008148 @default.
- W3044652285 hasConcept C45942800 @default.
- W3044652285 hasConcept C50644808 @default.
- W3044652285 hasConcept C66402592 @default.
- W3044652285 hasConcept C78519656 @default.
- W3044652285 hasConcept C86803240 @default.
- W3044652285 hasConceptScore W3044652285C108583219 @default.
- W3044652285 hasConceptScore W3044652285C119857082 @default.
- W3044652285 hasConceptScore W3044652285C119898033 @default.
- W3044652285 hasConceptScore W3044652285C127413603 @default.
- W3044652285 hasConceptScore W3044652285C133488467 @default.
- W3044652285 hasConceptScore W3044652285C143724316 @default.
- W3044652285 hasConceptScore W3044652285C147168706 @default.
- W3044652285 hasConceptScore W3044652285C151406439 @default.
- W3044652285 hasConceptScore W3044652285C151730666 @default.
- W3044652285 hasConceptScore W3044652285C154945302 @default.
- W3044652285 hasConceptScore W3044652285C204036174 @default.
- W3044652285 hasConceptScore W3044652285C2988984586 @default.
- W3044652285 hasConceptScore W3044652285C41008148 @default.
- W3044652285 hasConceptScore W3044652285C45942800 @default.
- W3044652285 hasConceptScore W3044652285C50644808 @default.
- W3044652285 hasConceptScore W3044652285C66402592 @default.
- W3044652285 hasConceptScore W3044652285C78519656 @default.
- W3044652285 hasConceptScore W3044652285C86803240 @default.
- W3044652285 hasLocation W30446522851 @default.
- W3044652285 hasOpenAccess W3044652285 @default.
- W3044652285 hasPrimaryLocation W30446522851 @default.
- W3044652285 hasRelatedWork W2751140544 @default.
- W3044652285 hasRelatedWork W2978259066 @default.
- W3044652285 hasRelatedWork W3044652285 @default.
- W3044652285 hasRelatedWork W3129712087 @default.
- W3044652285 hasRelatedWork W3136979370 @default.
- W3044652285 hasRelatedWork W3162132941 @default.
- W3044652285 hasRelatedWork W3192794374 @default.
- W3044652285 hasRelatedWork W4220785415 @default.
- W3044652285 hasRelatedWork W4308112567 @default.
- W3044652285 hasRelatedWork W4310989423 @default.
- W3044652285 isParatext "false" @default.
- W3044652285 isRetracted "false" @default.
- W3044652285 magId "3044652285" @default.
- W3044652285 workType "article" @default.